摘要
分析了深空航天器面临的复杂空间环境以及对航天用功能型复合材料的需求,系统综述了耐高低温、抗宇宙射线、电磁屏蔽等深空探测环境用功能型复合材料的研究进展,最后,展望了功能型复合材料在深空探测领域中的潜在应用。
近年来,我国航天事业发展迅速,北斗导航系统、神舟系列飞船、天宫实验室陆续成功服役。多型号航天器的发展推动了航天科研工作者对近地球太空环境的更深层次认识,恶劣的太空环境对设备的可靠性提出了苛刻的要求,而设备的可靠性很大程度上依赖于材料的长期服役性能。在此期间,国内科研工作者在高性能碳纤维复合材料、高性能金属材料、耐空间环境涂层等诸多材料领域取得了长足的进步,有力地保障了我国航天器对各种近地太空环境的需求。但是随着国家“深空探测”战略的实施,月球、火星、小行星将是未来航天科研工作者的主战
“一代材料,一代装备”,深空探测将面临更为复杂、严酷的太空环境,不同探测任务会面临完全不同的空间环境。为此,需要针对特定深空探测任务,探测并分析任务所面临的空间环境条件,以提高航天器可靠性为原则,逐条分解并归纳出各种材料在特殊太空环境下的性能需求,从需求端为科研工作者提供材料研发方向。苛刻的空间环境是造成航天器异常的主要原因之一,是未来深空探测工程应用关注的重点,高能射线辐照、极端高低温交变、复杂电磁环境等空间环境会导致航天器主体材料发生微观物理化学变化,并引发航天器结构损伤,甚至导致结构破坏,影响航天器的功能甚至寿
碳纤维复合材料因其“轻质高强”的特性使其在“轻量化”要求严苛的航天器中大量使用。在深空探测中,高低温交变环境会引起碳纤维复合材料结构件树脂基体内部出现微裂纹,导致碳纤维复合材料结构件尺寸发生变化甚至分层,而宇宙射线、太阳电磁辐射、高能粒子、等离子体、原子氧会导致复合材料树脂基体侵蚀、老化,最终影响复合材料整体结构的性能和服役寿命,而释放的小分子会附着在航天器电子设备上,严重影响星载设备的功能和性
为了满足深空探测器在高低温交变、宇宙射线、电磁辐射等空间环境的使用要求,具有特定功能的复合材料成为航天材料研究领域的一大热点,本文将对特定空间环境条件下功能型复合材性能需求以及研究进展进行分析和归纳总结。
高低温是深空探测器面临的共性问题,与卫星和载人飞船相比,深空探测器面临的温度环境更为苛刻。通常深空环境下的温度为-270.3 ℃,表面阳光直射时月球表面温度高达127 ℃,而夜晚温度可以降低至-183 ℃,温度变化超过300 ℃。火星表面温度相对温和,白天温度可达20 ℃,而夜晚温度可以降低至-150 ℃,温差有时会接近约200 ℃。金星大气层中约96%是CO2,温室效应明显,平均表面温度高达462
深空探测器耐高温可以分为两个类型:一是短期耐高温材料;二是长期服役耐高温材料。
以“祝融号”火星探测器(

图1 火星巡视器着陆状态及“祝融号”火星车
Fig.1 Landing status of Mars patrol and "Zhurong" rover
氰酸酯单体是一种酚衍生物,由双酚或多酚与氢氰酸反应而成,含有两个及以上的氰酸酯官能团(—OCN),因其官能团中的氧原子和氮原子具有较高的电负性,在受热和有催化剂存在的情况下,通过环化反应形成三嗪环结构,由于其结构具有高度的对称性,可以阻止其分子结构基团旋转,使得氰酸酯固化后具有高的玻璃化温度(Tg
双马来酰亚胺是以马来酰亚胺为活性端基的双官团化合物,是聚酰亚胺树脂体系派生出来的一类热固性树脂,被美国NASA誉为“综合性能最优异的热固性基体树脂
氰酸酯和双马来酰亚胺树脂不能满足300 ℃以上的高温需求,热固性聚酰亚胺是分子主链上带有酰亚胺基团的双官能团低分子量单体或预聚物或它们的混合物,制得的复合材料具有优异的耐热性能和较高的力学性能,最高使用温度超过300
邻苯二甲腈树脂是以邻苯二甲腈封端并作为交联基团的耐高温有机树脂,其由于分子含有强极性基团-CN,在经过375 ℃甚至更高的温度固化后,形成苯基均三嗪环和酞菁等芳杂环结构,使其Tg高达500 ℃,赋予了材料具有优异的耐热性和热稳定
目前,美国的Maverick公司已经向市场推出了商业化的邻苯二甲腈树脂产品,被命名为MVK-3。中国科学院化学研究所赵彤
深空探测器在空间飞行和近地行星服役期间,均会面临极端低温环境的考验。例如:木星、火星的地表温度最低可达-140 ℃,天王星、冥王星、海王星的地表温度均低于-210 ℃。复合材料作为深空探测器结构使用时,必须考虑其低温环境下的长期服役性能。就航天器而言,复合材料一般用于制造液氢、液氧低温容器以及深空探测器的复合材料结构件。
轻质高强的碳纤维复合材料低温推进剂贮箱是未来航天器贮箱的发展方向,其“轻量化”水平直接决定了运载火箭的推重比、性价比等服役性能。推进分系统占箭体结构总重的50%以上,因此,设计轻量化的贮箱是未来提高火箭载荷比的关键技术之

(a) Space X公司低温度贮箱

(b) 中国运载火箭技术研究院低温贮箱
图2 低温储箱
Fig.2 Cryogenic tank
目前,低温贮箱已经广泛使用碳纤维复合材料制备。美国的Delta系列航天飞行器制造公司(MDA)早在1987年就开始对耐低温碳纤维复合材料贮箱进行研究,他们针对氢分子渗透和耐低温复合材料力学性能等关键技术进行攻关,并于20世纪90年代试制成功复合材料液氢贮
深空探测器在月球、火星表面服役期间,要经受白昼和黑夜温度差为200~300 ℃的温度交变环境。碳纤维复合材料中的碳纤维和树脂之间的热膨胀系数差别巨大,在长期的高低温交变服役环境中,热应力和热膨胀系数的不匹配会导致纤维与树脂之间界面破坏,进而产生微裂纹导致复合材料产生结构性失效。谭伟
为了提高极端高、低温交变环境下复合材料的长期服役性能,采用与低温碳纤维复合材料类似的方法,即通过提高树脂基体分子链的柔韧性、减小树脂与碳纤维的热膨胀系数差异、掺杂纳米材料降低树脂基体的微裂纹扩展等技术手
深空探测航天器需要长时间在星际空间飞行,如火星探测器飞行时间长达300 d以上。除了高低温环境外,高强度宇宙射线辐射也同样严重威胁着深空探测器以及碳纤维复合材料的可靠性与安全
在银河系内部,存在高能量的宇宙射线,这些射线由87%的质子、12%的氦气以及1%的重核(电荷范围为3到28)组成。当质子高速作用于航天器材料时,通过一系列碰撞将材料本体原子的电子撞出产生电子散射,质子损失能量并造成材料电
ZHONG

图3 超高分子量聚乙烯/聚苯并噁嗪富氢复合材料
Fig.3 UHMWPE/Hydrogen-rich benzoxazine resins composite
在深空探测过程中,深空探测器可能会遭受空间初级中子以及高能射线与物质相互作用产生的次级中子的辐照损伤。空间中子主要来自太阳和宇宙辐射中存在的中子,但是由于中子的半衰期较短,仅有10.80 min,为此太阳系内的中子主要为太阳辐射产生。次级中子主要是由高能重离子与舱体被动屏蔽材料发生复杂相互作用而产生的。中子与航天器器件材料相互作用可能诱发位移、损伤效应、单粒子效应,会导致材料性能退化或器件损伤,并严重威胁航天员的身体健康。为此,深空探测器的中子屏蔽也是必须考虑的关键问
目前所使用的中子屏蔽材料主要是由各种中子吸收剂填料与混凝土、金属、高分子复合材料等,与地球上利用重金属或钢筋混凝土进行中子防护相比,深空探测器对屏蔽材料的轻量化设计要求更高。而低密度的高分子及其复合材料在深空探测领域更具有优势。轻质高强、高屏蔽性能的聚合物复合材料是深空探测的研究方向。在这方面,热固性微纳米复合材料被认为是设计有效衰减中子辐射屏蔽的合适材料。TOYENA

图4 Sm2O3/UHMWPE复合材料电镜照片
Fig.4 SEM images of Sm2O3/UHMWPE composites
注: (a)~(f)分别为添加0、10%、20%、30%、40%、50%(w)Sm2O3粉末的样品。
低地球轨道大气主要由原子氧和氮气组成,原子氧具有极强的氧化性能,氧化性比分子氧强很多。原子氧的碰撞动能为5.3 eV,所产生的作用与4.8×1
研究表明,由于各种有害条件的共同作用,聚合物复合材料在低地球轨道环境中的降解速度加快。每种低地球轨道的危险条件都会对表面产生不同的降解效果。XPS结果表明,处理后的样品表面发生了断链和氧化反应。经AO处理的样品表面生成更多的C—O和cdo双键官能团。ToF-SIMS数据中C3H7N
AWAJA
碳纤维复合材料作为航天器的主要结构材料,暴露在原子氧环境的时间越久,损伤越大。在轨运行期间,原子氧能够持续对树脂基体剥蚀,降低复合材料的机械性能和热性能。为了防止原子氧对树脂基体的侵蚀,延缓碳纤维复合材料性能衰退,文献[
空间环境中的紫外线波长为1~400 nm,按照波长可以分为真空紫外(10~200 nm)和近紫外(200~400 nm)。虽然太阳紫外辐照能量在整体太阳总辐照量中所占比例很小,但是紫外光子能量很高,波长范围为100~200 nm的紫外辐照的能量约为628~1 256 kJ/mol,其能量足以致使聚合物发生光化学反应,导致结合能较低的C—C、C—O、C—N 化学键断裂,破坏高分子材料的化学结构,进而导致材料性能退化。就碳纤维复合材料而言,树脂基体吸收紫外辐射能量后,会导致树脂基体分子链断裂,纤维与树脂界面强度下降,表面形成微裂纹造成碳纤维复合材料表面开
JIANG
为了降低空间环境以及探测器内电子设备电磁辐射的干扰,电磁屏蔽材料被广泛应用于关键电子设备。近年来,随着纳米材料的发展,以碳纳米、石墨烯为主的新型电磁屏蔽材料得到快速的发展。ZENG等人设计并制备了各向异性的仿生蜂窝多孔状复合材料,提出取向孔形貌对电磁屏蔽性能具有重要影响的新机理。作者通过在聚氨酯/碳纳米管复合材料中引入取向的蜂窝状多孔结构,证明当电磁波传播方向垂直于取向的蜂窝孔道时,多孔结构能够增加电磁波在孔道内的多重反射和散射,大幅度提高材料的电磁屏蔽性

(a) Nanocomp碳纳米管膜

(b) 德国HPS公司设计的电磁屏蔽箱
图5 电磁屏蔽材料及结构
Fig.5 Electromagnetic shielding material and structure
ZENG
Nanocomp科技的碳纳米管(CNT)材料在某些飞行系统姿态控制电机支柱和主要引擎室上形成表面层[
智能材料(Intelligent material)是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料,国内外科研工作者在此领域也进行了大量的研究。马玉钦
最近,其团队研制了中国国旗锁紧展开机构(

图6 中国国旗锁紧展开机构释放国旗展开
Fig.6 Chinese flag lock and unfold mechanism to release the national flag unfold
在未来深空探测任务中,探测器会遭受高低温、宇宙射线、电磁辐射等复杂空间环境,对作为探测器主体结构的复合材料提出了更高的要求,具有耐特定空间环境特性的功能型复合材料是未来发展方向。就航天器总体设计单位而言,针对任务需要,有针对性总结并归纳共性问题,有的放矢地开发适合特定服役环境的新型复合材料,形成系列化产品库,再进行特定深空探测任务时,通过对产品库内已有产品进行改进或重组,满足服役环境材料性能需求,是未来深空探测高性能复合材料的发展方向。
参考文献
赵琦,王兆琦,赵源.亚洲国家主要月球与深空探测任务发展[J].中国航天,2021(3):61-66. [百度学术]
ZHAO Q, WANG Z Q, ZHAO Y. Development of major lunar and deep space exploration missions in Asian countries[J]. Aerospace China,2031(3):61-66. [百度学术]
张扬眉.2020年国外深空探测领域发展综述[J].国际太空,2021(2):31-35. [百度学术]
ZHANG Y M. Overview of foreign deep space exploration in 2020[J]. Space International,2021(2):31-35. [百度学术]
吴季.深空探测的现状、展望与建议[J].科技导报,2021,39(3):80-87. [百度学术]
WU J.Deep space exploration:Status,expectation and suggestion [J].Science & Technology Review,2021,39(3):80-87. [百度学术]
GUBBY R, Evans J. Space environment effects and satellite design [J].Journal of Atmospheric and Solar-Terrestrial Physies,2002,64:1723-1733. [百度学术]
ARNOLD G S, PEPLINSKI D R. Reaction of high-velocity atomic oxygen with carbon [J].AIAA Journal,1986,24(4):673-677. [百度学术]
EGUSA S,SEGUCHI T.Polymer composites as magnet materials: irradiation effects and degradation mechanism of mechanical properties[J].Journal of Nuclear Materials, 1991,179: 1111-1114. [百度学术]
陈国珍,林国成.低地球轨道带电粒子辐射环境对航天器的影响[J]. 中国空间科学技术, 1994, 14(6):43-48. [百度学术]
CHEN G Z, LIN G C. Energy particle environment on low earth orbit and its effects on spacecraft[J]. Chinese Space Science and Technology, 1994, 14(6):43-48. [百度学术]
GAO Y,JIANG S,YANG D,et al.A study on radiation effect of < 200 keV protons on M40J/epoxy composites[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms,2005,229(2): 261-268. [百度学术]
PIRLOT C,MEKHALIF Z,FONSECA A,et al. Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams[J].Chemical Physics Letters,2003,372(3/4):595-602. [百度学术]
BHADRA S,KHASTGIR D. Degradation and stability of polyaniline on exposure to electron beam irradiatio (structure-property relationship)[J].Polymer Degradation & Stability, 2007,92(10):1824-1832. [百度学术]
杨春信.金星气球环境分析与热动力研究[J].航空动力学报,2012,27(11):2505-2510. [百度学术]
YANG C X.Study of environment analysis and thermodynamic on Venus balloon[J]. Journal of Aerospace Power, 2012,27(11):2505-2510. [百度学术]
ZALDIVAR R J.Lessons learned in the processing of poluycyanurate resin composites[R].New York:Aerospace Report, 2011. [百度学术]
SHIMP D A,CHIN B.Electrical properties of cyanate ester resins and their significance for applications [J].Blackie Academic and Professional, 1994: 230-257. [百度学术]
KORSHAK V V,GRIBKOVA P N,DMITRIENKO A V,et al.Thermal and oxidative thermal degradation of polycynantes[J]. Vysokomol Soed, 1974, 6(1):15-21. [百度学术]
王志强.树脂基结构/透波复合材料研究进展[R].中国航空报,2015-11-03. [百度学术]
WANG Z Q.Research progress of resin based structural / transparent composites[R].China Aviation News,2015-11-03. [百度学术]
MCC Develops highly heat-resistant and high-strength carbon fiber prepreg. https://www.m-chemical.co.jp/en/news/2021/__icsFiles/afieldfile/2021/03/19/20210317_Prepreg_Eng.pdf. [百度学术]
王慧杰.航空复合材料树脂基体的现状及发展[J].复合材料学报,1995,12(4):35-38. [百度学术]
WANG H J.Present state and future development of the resin matrix in aircraft composite materials[J].Acta Materiae Compositae Sinica,1995,12(4):35-38. [百度学术]
王德志,王鑫,刘立柱,等.双马来酰亚胺共聚改性及性能[J].复合材料学报,2017,34(5):1088-1094. [百度学术]
WANG D Z,WANG X,LIU L Z,et al.Preparation and properties of the modified bismaleimide systems[J].Acta Materiae Compositae Sinica,2017,34(5):1088-1094. [百度学术]
陈宇飞,郭红缘,耿成宝,等.聚醚醚酮和烯丙基化合物改性双马来酰亚胺复合材料微观结构及力学性能[J].复合材料学报,2018,35(11):3081-3087. [百度学术]
CHEN Y F,GUO H Y,GENG C B,et al.Microstructure and mechanical properties of bismaleimide composites modified with poly (ether ether ketone) and allyl compounds[J]. Acta Materiae Compositae Sinica,2018,35(11):3081-3087. [百度学术]
LUO H Y,ROY S,LU H B.Dynamic compressive behavior of unidirectional IM7/5250-4 laminate after thermal oxida-tion[J]. Composites Science and Technology,2012,72(2):159-166. [百度学术]
杨家义,杨博峰,郑国运,等.热固性聚酰亚胺树脂成型工艺研究进展[J].功能材料,2018,49(2):2054-2059. [百度学术]
YANG J Y,YANG B F,ZHENG G Y,et al.Research progress of moulding process for thermosetting polyimide resins, Journal of Functional Materials,2018,49(2):2054-2059. [百度学术]
WILSON D.PMR-15 pressing,properties and problems[J].British Polym,1998,20(5) :405-416. [百度学术]
VUONG T T. Effect of -18 ℃ storage on PMR-15 polyimides resins[J]. Inter Sample, 1989(8-11):98-111. [百度学术]
HUNTER A B.Quality assurance of PMR-15 [C].Washington,D C:NASA Conference Publication,1987:375-389. [百度学术]
LEE A. Kinetics of network re-formation in hydrolytic degraded AFR700B polyimides resins[J].High Performance Polymers,1996,8(4):475-489. [百度学术]
THORP K E G,ROY A K,CRASTO A S.Effect of isothermal aging on the relaation spectra of AFR700B [C].proceeding of International SAMPE Technical Conference,F,1996. [百度学术]
WHITLEY K S,COLLONS T J.Mechanical properties of T650-35/AFR- PE-4 at elevated temperatures for lightweight aeroshell designs [R].NASA-20060013437-2006014400. [百度学术]
宗立率.主链含三芳基均三嗪结构耐高温树脂的合成与性能[P].大连:大连理工大学,2015. [百度学术]
ZONG L L. Synthesis and properties of heat-resistant resins bearing phenyl-s-triazine moieties in backbones[P].DALIAN: Dalian University of Technology,2015. [百度学术]
傅佳艺.高性能邻苯二甲腈树脂的新型固化剂的研究[P].大连:大连理工大学,2015. [百度学术]
FU J Y.Study on new curing agents of high-performance phthalonitrils resins[P].Dalian:Dalian University of Technology,2015. [百度学术]
KELLER T M, PRICE T K. Amino-cured bisphenol-linked phthalonitrile resins[J]. J Macromol Sci. Chem., 1982, 18: 931-937. [百度学术]
KELLER T M,GRIFFTH J R.Sythesis and polmerizaton of fluorinated phthalonitrile monomers[J].ACS Org Coat Plast Chem. Pre. Pr., 1978, 39: 546-548. [百度学术]
周恒.新型耐高温邻苯二甲腈树脂体系的设计、合成与性能研究[P].北京:中国科学院化学研究所,2012. [百度学术]
ZHOU H. Desige, synthesis and property study on high-temperature resistant phthalonitirle resin systems[P].Beijing: Institute of Chemistry,Chinese Academy of Sciences,2012. [百度学术]
ROBINSON M J, STOLTZFUS J M, OWENS T N.Composite material compatibility with liquid oxygen[C]. Strucures,Structureal Dynamics,and Materials conference,1997. [百度学术]
黄诚,刘德博,吴会强,等.我国航天运载器复合材料贮箱应用展望[J].沈阳航空航天大学学报,2016,33(2):27-35. [百度学术]
HUANG C,LIU D B,WU H Q,et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace University ,2016,33(2):27-35. [百度学术]
于建,晏飞.可重复使用运载器复合材料低温贮箱应用研究[J].火箭推进,2009,35(6):19-22 [百度学术]
YU J, YAN F.Study on application of composite cryogenic tank for reusable launch vehicle[J].Journal of Rocket Propulsion,2009,35(6):19-22 [百度学术]
LEE S S, KIM S C. Morphology and properties of polydimethylsiloxane-modified epoxy resin [J].Journal of Applied Polymer Science,2015,64(5):941-955. [百度学术]
UDIIN M F,SUN C T.Improved dispersion and mechanical properties of hybrid nanocomposites [J].Composites Science and Techenology,2010,70(2):223-230. [百度学术]
LIU S L,FAN X S,HE C B.Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles[J].Composites Science and Techenology,2016,125:132-140. [百度学术]
ROBIBSON M J. Composite strutures on the DC-XA resable launch vehicle [J]. Journal of Advanced Materials,1997,28(3):9-18. [百度学术]
MILLER S,MEADOR M.Polymer-layered silicate nanocomposites for cryotank applications[C].48th AIAA/ASME/ASCE/AHS/ASCStructures,Structural Dynamics,and Materials Conference,2007. [百度学术]
MOSHER D.The trickiest part of Elon Musk’s Mars spaceship-a giant black orb-just passed a critical test[EB/OL].[2016,11,16].http://businessinsider.com/spacex-carbon-fiber-fuel-tank-ocean-hip-test-2016-11. [百度学术]
https://baijiahao.baidu.com/s?id=1689770187547460941&wfr=spider&for=pc, 中国航天报. https://baijiahao.baidu.com/s?id=1689770187547460941&wfr=spider&for=pc,China Aerospace news. [百度学术]
谭伟,那景新,任俊铭,等.高低温老化对碳纤维增强复合材料层间力学性能的影响[J].吉林大学学报(工学版),2020,50(4): 1324-1332. [百度学术]
TAN W,NA J X,REN J M,et al.Effect of high and low temperature aging on interlaminar mechanical properties of carbon fiber reinforced composites [J].Journal of Jilin University(Engineering and Technology Edition),2020,50(4):1324-1332. [百度学术]
SHIN K B, KIM C G, HONG C S, et al. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments [J]. Composites Part B-Engineering, 2000, 31(3):223-235. [百度学术]
GAO Y,HE S,YANG D Z,et al.Effect of vacuum thermo-cycling on physical properties of unidirectional M40J/AG-80 composites [J].Composites Part B-Engineering,2005, 36(4):351-358. [百度学术]
FENG Q,LIU Y,PENG Y H,et al.Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotube [J].Composites Science & Technology,2014,104(19):59-65. [百度学术]
赫玉欣,张丽,朱伸兵,等.碳纳米管的表面改性对环氧树脂低温(77 K)冲击性能及热膨胀系数的影响[J].复合材料学报,2012,29(4):56-62. [百度学术]
HE Y X,ZHANG L,ZHU S B,et al.Effects of functionalized MWCNTs on the impact strength at cryogenic temperature(77 K) and coefficient of thermal expansion of MWCENs/epoxy resin [J].Acta Materiae Compositae Sinica,2012,29(4):56-62. [百度学术]
李浩,碳纳米管/环氧树脂复合材料高低温弹性模量的分子模拟与实验研究[P].北京:北京化工大学,2016. [百度学术]
LI H.Molecular simulation and experimental analysis on elastic modulus of swcnts/epoxy composites at high-low temperature[P].Beijing:Beijing University of Chemical Technology,2016. [百度学术]
BARTHEL J,SARIGUL-KLIJN N.Importance of spherical shell models for radiation shielding designs on space missions [J].Journal of Spacecraft and Rockets,2019,56(5): 1658-1661. [百度学术]
BOND D K, GODDARD B, SINGLETERRY R C, et al. Evaluating the effectiveness of common aerospace materials at lowering the whole body effective dose equivalent in deep space [J]. Acta Astronautica, 2019, 165(10):68-95. [百度学术]
GARG K,BHATNAGAR S.Galactic cosmic energy spectrum based simulation of total equivalent dose in human phantom [M].XXII DAE High Energy Physics Symposium,2018: 353-356. [百度学术]
GATES M M, LEWIS M J. Optimization of spacecraft orbit and shielding for radiation dose [J]. Journal of Spacecraft and Rockets, 1994, 31(3): 447-452. [百度学术]
KARTASHOV D,SHURSHAKOV V.Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method [J].Acta Astronautica,2018,144(3):320-330. [百度学术]
BARTHEL J,SARIGUL-KLIJN N.Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth,and byproduct aspects [J].Acta Astronautica, 2018, 144(3):254-262. [百度学术]
WILSON J W, THIBEAULT S A, CUCINOTTA F A, et al. Issues in protection from galactic cosmic rays [J]. Radiat Environ Biophys 1995,34:217-222. [百度学术]
ZEITLIN C, GUETERSLOH S, HEILBROMN L, et al. Shielding and fragmentation studies [J]. Radiat Prot Dosim 2005,116:123-124. [百度学术]
PORTER R S, KANAMTO T, ZACHARIADES A E. Property opportunities with polyolefins: a review Preparations and applications of high stiffness and strength by uniaxial draw[J]. Polymer 1994,35:4979-4983. [百度学术]
ZHONG W H,SUI G,JANA S,et al.Cosmic radiation shielding tests for UHMWPE fiber/ nano-epoxy composites[J].Composites Science and Technology,2009,69 :2093-2097. [百度学术]
CUMMINGS C, LUCAS E M, MARRO J A, et al. The effects of proton radiation on UHMWPE material properties for space flight and medical applications[J]. Advances in Space Research,2011,48:1572-1577. [百度学术]
WINROTH S,SCOTT C,ISHIDA H.Structure and performance of benzoxazine composites for space radiation shielding[J].Molecules,2020, 25:4346-4360. [百度学术]
IGUCHI D,OHSSHI S,GHIZELLE J E,et al. Development of hydrogen-rich benzoxazine resins with low polymerization temperature for space radiation shielding[J]. ACS Omega,2018(3):11569-11581. [百度学术]
张紫霞,魏志勇,方美华,等.空间环境中子效应及测量技术[J].装备环境程,2009,6(4):5-11. [百度学术]
ZHANG Z X,WEI Z Y,FANG M H.Neutron radiation effects of space environment and measuring technique[J]. Equipment Environmental Engineering,2009,6(4):5-11. [百度学术]
文轩,安恒,杨生胜,等.空间中子探测器能量响应仿真分析及验证[J].核技术,2020,43:120401. [百度学术]
WEN X,AN H,YANG S S,et al.Simulation analysis and verification of energy response of space neutron detector [J]. Nuclear Techniques,2020, 43:1-9. [百度学术]
TOYENA D,WIMOLMALAB E, SOMBATSOMPOPB N,et al. Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding[J].Radiation Physics and Chemistry,2019,164:108366-108374. [百度学术]
KIM J, LEE B C, UJM Y R, et al. Enhancement of thermal neutron attenuation of nano-B4C,-BN dispersed neutron shielding polymer nanocomposites[J].Journal of Nuclear Material, 2014, 453:108366-108374. [百度学术]
ADELI R, SHIRMARDI S P, AHMADI S J. Neutron irradiation teses on B4C/epoxy composite for neutron shielding application and the parameters asssy[J].Radiation Physics and Chemistry,2016,127:140-146. [百度学术]
BANKS B A,SNYDER A,MILLER S K,et al. Atomic-oxygen undercutting of protected polymer in low earth orbit[J].Journal of Spacecraft and Rockets,2005,41(3):335-339. [百度学术]
AWAJA F,MOON J B,Zhang S N,et al.Surface molecular degradation of 3D glass polymer composite under low earth orbit simulated space environment[J].Polymer Degradation and Stability,2010,95:987-996. [百度学术]
赵小虎,沈志刚,邢玉山.碳纤维/环氧复合材料的原子氧剥蚀效应试验研究[J].北京航空航天大学学报, 2002,28(6):668-670. [百度学术]
ZHAO X H,SHEN Z G,XING Y S.Experimental Investigations of atomic oxygen effects on a carbon fiber/epoxy resin composite material [J].Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6): 668-670. [百度学术]
TAGAWA M,YOKOTA K,OHMAE N,et al.Volume diffusion of atomic oxygen in alpha-SiO2 protective coating[J].High Performance Polymers,2000,12(1):53-63. [百度学术]
MUTIKAINEN R.Multiple layer coating scheme to protect polymer films from atomic oxygen erosion[J].Thin Soild Films,1994,238(2):248-257. [百度学术]
SANDERS M L,ROWLANDS S,COOMBS P G. Selfhealing UV barrier coating for flexible polymer substrate: USA, US5790304[P].August 4,1998. [百度学术]
ZIMCIK D G, WERTHEIMER M, BALMAIN K B, et al. Plasma-deposited protective coatings for spacecraft application[J]. J Spacecraft Rockets,1991, 8(6):652- 57. [百度学术]
李磊.国际紫外线防护标准 801(UV Standard 801)的介绍[J].纺织导报,2011(10):147-148. [百度学术]
LI L.Introduction of UV standard 801 [J]. China Textile Leader,2011(10): 147-148. [百度学术]
ALFRED T N,MAHESH H,SHAIK J.Influence of nanoclay on the durability of woven carbon/epoxy composites subjected to ultraviolet radiation [J].Mechanics of Advanced Materials and Structures, 2013, 21(3): 222-236. [百度学术]
SUNG L P,NADAL M E,MCKNIGHT M E,et al. Optical reflectance of metallic coatings: Effect of aluminum flake orientation [J].Journal of Coatings Technology,2002,74(932): 55-63. [百度学术]
CHANG X T. The anti-ultraviolet light (UV) aging property of aluminium particles/epoxy composite [J]. Progress in Organic Coatings,2016,101:305-308. [百度学术]
JIANG L X,HE S Y,ZHUANG D Y.Resistance to vacuum ultraviolet irradiation of nano-TiO2 modified carbon/epoxy composites [J].Journal of Materials Research,2003,18(3):654-658. [百度学术]
饶续.改性埃洛石增强碳纤维/环氧脂复合材料的耐低温循环性能和耐紫外辐照性能研究[D].合肥:合肥工业大学. [百度学术]
RAO X.Study on cryogenic cycling properties and ultraviolet radiation properties of carbon fiber/eposy resin composites reinforced with modified halloysite [D].Hefei: Hefei University of Technology. [百度学术]
ZENG Z H, CHEN M J, LI W W, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding [J].Adv. Funct. Mater.,2016,26:303-310. [百度学术]
Zeng Z H, JIN H, CHEN M J,et al. microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites [J].Small, 2017, 13:1701388-17013966. [百度学术]
ZENG Z H,WANG C X,SIQUEIRA G,et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance [J]. Adv. Mater.,2020, 32:1908496-1908505. [百度学术]
马玉钦,赵亚涛,许威,等.高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势[J]. 复合材料学报,2020,37(10):2367-2375. [百度学术]
MA Y Q,ZHAO Y T,XU W,et al.Research status and development trend of high thermal conductivity graphene-carbon fiber hybrid reinforced shape memory plastic composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10):2367-2375. [百度学术]