摘要
含异质元素Al的SiC(N)陶瓷前驱体的合成是制备高性能耐高温SiC纤维的关键步骤。本文综述了含异质元素Al的SiC(N)陶瓷前驱体的合成方法与表征结果及Al元素在陶瓷产物中的作用;并简要介绍了含Al的SiC(N)陶瓷前驱体应用,并对发展趋势和应用前景进行了展望。
陶瓷材料以其强度高、硬度大、耐高温性能和耐磨损性能优良等特点,已经在航空航天发动机、大功率内燃机、固体火箭发动机等部件中被广泛应用。传统的陶瓷制备方法往往需要高温烧结、添加助烧结剂,成型、加工工艺复杂,大大限制了传统陶瓷材料的应用。20世纪60年代,有学者提出使用聚合物前驱体转化法制备先进陶瓷材料,这种陶瓷被称为前驱体转化陶瓷(PDCs
聚碳硅烷(PCS)是应用最为广泛的SiC陶瓷前驱体。国内外研究者采用多种合成法合成PCS。具有代表性的是Yajima“两步法”制备PC

图1 Yajima法制备PCS典型分子结
Fig.1 Molecular structrue diagram of PCS from Yajim
近年来,关于在PCS等前驱体中掺杂异质元素进行物理或化学改性的研究成为热点。通过掺杂如A
1998年,日本宇部兴产公司的ISHIKAWA等
含有Al元素的陶瓷前驱体的制备研究具有重大意义。本文重点对含有Al元素的SiC(N)陶瓷前驱体合成、表征的国内外研究现状及含有Al的陶瓷前驱体的应用进行了综述。
含铝陶瓷前驱体主要是通过有机硅聚合物和含铝化合物反应得到的。按照有机硅聚合物的状态,可以将含铝陶瓷前驱体的合成分类为利用固态有机硅聚合物合成和利用液态有机硅聚合物合成。
ISHIKAWA等
FLORENCE BABONNEAU

图2 合成的PACS
Fig.2
另外,可以采用不易升华的含铝化合物或升华温度高于反应温度的含铝化合物作为铝源。沈
储昭杰

图3 常压法与高压法得到的PACS制备的SiC纤维的拉伸强度对比
Fig.3 Tensile strengths of SiC fibers of different PACS synthesied by atmospheric pressure method and high pressure metho
乙酰丙酮铝的三官能团结构与固化剂类似,因此合成的PACS易出现超高分子量部分,造成分子量分布增大。且乙酰丙酮铝中的氧被引入至PACS前驱体中,纺丝成纤维后易出现孔隙等缺陷,对纤维的性能产生不利影响。苟燕子

图4 (CH3)2AlCl和PCS的反应
Fig.4 Reaction between (CH3)2AlCl and PC
与使用乙酰丙酮铝合成PACS相比,使用氯化二甲基铝的反应得到的PACS剩余的Si—H键数目更多,有利于纺丝后的纤维的固化,对于制备含Al的SiC纤维有利

图5 合成的PACS
Fig.5
针对固态有机硅聚合物和乙酰丙酮铝反应分散性较差的问题进行合成路线改进时,还可以使用液态的有机硅聚合物进行反应。近年来,我国学者开展了许多这方面的研究工作。
国防科技大学的余煜玺

图6 PSCS和Al(AcAc)3的反应示意
Fig.6 Reaction scheme of PSCS with Al(AcAc)
PSCS是聚二甲基硅烷(Polydimethysilane)420 ℃裂解的产物。曹
郑春满

图7 氧元素含量、纤维拉伸强度与纤维增重的关
Fig.7 Relationship among oxygen content, tensile strength and mass gai
赵大方

图8 不同的乙酰丙酮铝用量得到的PACS的实际铝含量和理论铝含量的比
Fig.8 Comparison of experimental with calculated aluminum content of PACS obtained from various dosage of Al(AcAc)3
此外,段杨鹏

图9 不同 Al(AcAc)3/PSCS 比例制备的PACS
Fig.9
PSCS和乙酰丙酮铝的反应可以有效抑制乙酰丙酮铝的升华,且该反应温度较高,乙酰丙酮铝中的烷基和O在裂解时可以挥发为气体、脱离,有效降低前驱体中的O、C含量。但反应需要高温回流,反应时间较长。因此,杨景明

图10 不同Al(AcAc)3/LPCS比例制备的PACS
Fig.10
除了对仅含有Si、C、H的聚碳硅烷类聚合物进行改性外,还可以对聚硅氮烷进行改性,得到含Al的SiCN前驱体。聚硅氮烷是一类以Si—N为重复单元的聚合
YU

图11 不同的液态-固态前驱体体积SiAlCN陶瓷的SEM图
Fig11 SEM photographs of SiAlCN ceramics with different solid-liquid volume rati
DHAMNE
N-H + Al-O-CH(CH3)2 → N-Al + H-O-CH(CH3)2 | (1) |

图12 不同异丙醇铝用量制备的SiAlCN陶瓷
Fig.12
综上所述,国内外学者在含铝前驱体合成方面进行了大量研究,研究主要聚焦在通过选择合适的有机硅聚合物和含铝化合物作为原料,再根据所选原料的物理化学性质,选择合成方法,改进合成工艺,现已获得性能良好的含铝陶瓷前驱体。
合成含Al的SiC(N)陶瓷前驱体常选用的铝源为乙酰丙酮铝、仲丁醇铝等。由于乙酰丙酮铝分散性不好,且反应所需温度高于乙酰丙酮铝的升华温度,导致前驱体中铝含量低于理论含量。高压釜法可以一步反应直接得到PACS,操作简化有效避免乙酰丙酮铝升
且乙酰丙酮铝和仲丁醇铝二者均为含氧化合物,制备得到的前驱体O含量为2.9%~7
因此,为获得理想的含Al的SiC(N)陶瓷前驱体,在选择反应物时应遵循以下几个原则:(1)含铝化合物反应活性高,可以在相对温和的条件下以配位形式或活性官能团与有机硅聚合物发生如缩聚反应等的化学反应;(2)根据选取的反应原料的特点,可以简化制备工艺,采用温和的合成温度、压力等条件合成含Al陶瓷前驱体;(3)为得到高温性能良好的前驱体转化陶瓷,可选用不含氧的含铝化合物,或含氧量较低的含铝化合物;(4)制备得到的含Al的SiC(N)前驱体应易于保存,长时间放置不易凝胶化。
关于Al元素的掺杂在聚合物前驱体及后续固化、高温裂解和烧结过程中的作用,国内外学者也开展了相关研究工作。
高温处理过程中,纤维的晶体结构会发生变化。晶体缺陷、晶粒的过分长大都不利于纤维的耐温性能的提高。甄霞丽

图13 在不同温度热处理的含Al的SiC纤维的SEM图
Fig.13 SEM images obtained from Al-containing SiC fibers heat-treated at different temperatures
X射线衍射分析(XRD)结果表明,随着热处理温度升高,β-SiC晶粒并没有持续长大,其大小维持在10 nm左右,说明Al的掺杂有效抑制了晶粒的长大。研究认为高温烧结破坏了O—Al结构,Al捕获残余氧形成了Al2O3结构转移到SiC晶体结构中,抑制晶粒长大;同时,C—Al基团也以晶体缺陷的形式抑制了SiC晶粒的长大。
另外,Al元素可以有效提升SiC陶瓷产物的抗氧化性能,有研究者对其原因进行研究。WANG
(2) |

图14 1 200 ℃下SiCN,SiAlCN-5和SiAlCN-10的氧化层厚度-氧化时间关系曲线
Fig.14 Plots of the square of the oxide scale thichness as a function of annealing times for SiCN, SiAlCN-5 and SiAlCN-10 at 1 200
从氧化层厚度-氧化时间关系曲线图中可以看出,1 200 ℃时,随着氧化时间的增加,SiAlCN陶瓷氧化速率下降;稳定后,SiAlCN陶瓷的氧化速率仅为化学气相沉积方法制备的SiC和Si3N4的氧化速率的十分之一,表现出良好的抗氧化性能;另外,随着前驱体中Al含量的增加,对应的SiAlCN陶瓷的氧化速率进一步下降。这说明Al元素的掺杂可以有效提高前驱体转化陶瓷的抗氧化性能。研究者提出了如

图15 SiAlCN氧化层的结构示意
Fig.15 Schematic of oxide scale of SiAlC
ISHIKAWA等

图16 经过1 700 ℃热处理后的Si—Al—C—O晶界处的TEM和EDS图
Fig.16 TEM image and EDS results of the grain boundary of the product heat-treated at 1 700
综上所述,Al可以有效抑制高温下SiC晶粒长大;可以阻碍O元素在陶瓷氧化过程中的扩散;可以获得热动力学稳定的晶界。
前驱体转化SiC陶瓷材料具有优异的力学性能、耐高温性能、抗氧化性能。自Tyranno SA纤维问世以来,在SiC陶瓷前驱体中掺入Al元素一直是国内外学者研究的热点,用PACS制备耐超高温陶瓷纤维的研究不断涌现。国内国防科技大学制备了KD-SA含铝SiC纤
前驱体转化SiC陶瓷材料在半导体领域有很大潜力,可以作为高温环境、辐射环境等极端条件下的光电子器
目前,由聚碳硅烷前驱体制备碳纤维增强SiC陶瓷基复合材料已经实
国内外对含Al的陶瓷前驱体的研究已经取得长足进步,已经探索了多种制备PACS前驱体的方法,并在制备前驱体的基础上制得低氧含量、近化学计量比的含Al的SiC纤维,获得了更好的耐高温性能。
随着对先进航空和航天器性能要求的不断提高,降低发动机的质量、提高发动机的耐高温性能和推重比等需求都需要发展轻质高强、抗氧化、耐高温的新材料。含异质元素的SiC(N)陶瓷前驱体的研究依旧是新型陶瓷材料制备的一个热门类别。现有多种合成含铝陶瓷前驱体的方法,研究者通过使用不同的含铝化合物及有机硅聚合物制备含Al陶瓷前驱体,但这些合成方法往往伴随着复杂的实验工艺,且成本较高。除了提到的乙酰丙酮铝、异丙醇铝等含Al化合物,研究人员可能需要继续寻找新的铝源、新的合成方法,得到制备工艺简单、Al元素掺杂含量可调可控的含铝陶瓷前驱体。另外,含铝陶瓷前驱体的应用依旧是研究的重点方向,使用其作为基体制备纤维增强陶瓷基复合材料的研究还是空白。除了作为结构材料外,含Al的SiC(N) 陶瓷前驱体制备的陶瓷作为半导体材料、压敏材料、磁性材料等的应用也有待进一步探索。
参考文献
AMON K, KOJI M, KURT E, et al. Synthesis and high-temperature evolution of polysilylcarbodiimide-derived SiCN ceramic coatings[J].Journal of the European Ceramic Society 2015,35(14):771-3780. [百度学术]
RIEDEL R, MERA G,HAUSER R, et al. Silicon-based polymer-derived ceramics:synthesis properties and applications-A review[J].Journal of the Ceramic Society of Japan, 2006,114(1330):425-444. [百度学术]
RIEDEL R,MERA G,HAUSER R,et al.Polymer-derived ceramics: 40 years of research and innovation in advanced cramics[J].Journal of the American Ceramic Society, 2010, 93 (7):1805-1837. [百度学术]
MUKHERJEE J,CHAKRABORTY S, CHAKRAVARTY S,et al. Mechanical and tribological properties of silicon carbide coating on Inconel alloy from liquid pre-ceramic precursor[J].Ceramics International ,2014,40(5):6639-6645. [百度学术]
TAVAKOLI A H, GERSTEL P, GOLCZEWSKI J A, et al. Quantitative X‐ray diffraction analysis and modeling of the crystallization process in amorphous Si-B-C-N polymer‐derived ceramics[J].Journal of the American Ceramic Society, 2010, 93(5):1470-1478. [百度学术]
LI Q, YIN X, DUAN W, et al. Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band[J]. Journal of Alloys & Compounds,2013, 565:66-72. [百度学术]
MERA G, NAVROTSKY A, SEN S, et al. Polymer-derived SiCN and SiOC ceramics-structure and energetics at the nanoscale[J]. Journal of Materials Chemistry A,2013(1): 3826-3836. [百度学术]
YAJIMA S, OKAMURA K, HAYASHI J Y S, et al. Continuous silicon carbide fiber of high tensile strength[J]. Chemistry Letters,1975,9(12):1209-1212. [百度学术]
YAJIMA S,HASEGAWA Y,OKAMURA K,et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer[J].Nature,1978,273(5663):525-527. [百度学术]
ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200℃[J]. Nature,1998,391(6669):773-775. [百度学术]
YAJIMA S, IWAI T, YAMAMURA T, et al. Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds[J].Journal of Materials Science, 1981, 16 (5):1349-1355. [百度学术]
MISHRA R,TIWARI R K,SAXENA A K,et al.Synthesis of Fe-SiC nanowires via precursor route[J].Journal of Inorganic & Organometallic Polymers & Materials,2009,19(2):223-227. [百度学术]
ISHIKAWA T, KOHTOKU Y, KUMAGAWA K I, et al.Production mechanism of polyzirconocarbo-silane using zirconium(IV)acetylacetonate and its conversion of the polymer into inorganic materials[J]. Journal of Materials Science,1998, 33:161-166. [百度学术]
Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J].Composites Science and Technology,1994,51(2):135-144. [百度学术]
ISHIKAWA T,KAJII S,MATSUNAGA K,et al. A tough, thermally conductive silicon carbide composite with high strength up to 1 600 ℃ in air[J].Science,1998,282(5392): 1295-1297. [百度学术]
BABONNEAU F, SORARÚ G, THORNE K J, et al. Chemical characterization of Si-Al-C-O precursor and its pyrolysis[J].Journal of the American Ceramic Society,1991,74(7):1725-1728. [百度学术]
沈杰.含铝碳化硅纤维的制备及性能研究[D].南京:东南大学, 2017. [百度学术]
SHEN J. Preparation and properties of silicon carbide fiber containing aluminum [D].Nanjing: Southeast University, 2017. [百度学术]
储昭杰.含铝碳化硅纤维的制备及性能研究[D]. 南京:东南大学, 2019. [百度学术]
CHU Z J. Preparation and properties of silicon carbide fiber containing aluminum [D].Nanjing: Southeast University, 2019. [百度学术]
XIE Z, GOU Y X Z, GOU Y.Polyaluminocarbosilane as precursor for aluminum-containing SiC fiber from oxygen-free sources[J].Ceramics International,2016,42(8):10439-10443. [百度学术]
YU Y, LI X, CAO F,et al.Synthesis and characterization of polyaluminocarbosilane as SiC ceramic precursor[J].Transactions of Nonferrous Metals Society of China 2004,14(4):641-644. [百度学术]
曹峰. 耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].长沙:国防科学技术大学, 2002. [百度学术]
CAO F. Study of novel precursors to prepare super-high temperature resistant SiC fibers [D].Changsha:National University of Defence Technology, 2002. [百度学术]
ZHENG C,LI X,YU Y,et al.Conversion of polyaluminocarbosilane(PACS) to Si-Al-C-(O)fibers: evolutions and effect of oxygen[J]. Transactions of Nonferrous Metals Society of China ,2006,16(2):254-258. [百度学术]
赵大方,李效东,王浩,等. 合成聚铝碳硅烷研究[J]. 稀有金属材料与工程,2008,37(A01):729-732. [百度学术]
ZHAO D, LI X, WANG H, et al.Synthesis of polyaluminocarbosilane[J].Rare Metal Materials and Engineering,2008, 37(A01):729-732. [百度学术]
DUAN Y,MO G,CHEN H,et al.Synthesis of polyaluminocarbosilane with low branched molecular structure using liquid polysilacarbosilane and aluminum acetylacetonate by highpressure method[J].Applied Organometallic Chemistry,2018,33(2):4720. [百度学术]
杨景明,杨露姣,余煜玺,等. 基于液态聚碳硅烷的聚铝碳硅烷的合成与表征[J]. 高等学校化学学报,2009,30(12):2525-2529. [百度学术]
YANG J,YANG L,YU Y,et al.Synthesis and characterization of liquid polycarbosilane-derived polyaluminocarbosilane[J].Chemical Journal of Chinese Universities,2009,30(012):2525-2529. [百度学术]
张宗波,曾凡,罗永明,等. 聚硅氮烷的应用研究进展[J]. 有机硅材料,2013,27(3):216-222. [百度学术]
ZHANG Z B,ZENG F,LUO Y M,et al.Progress in application of polysilazane[J].Silicon Material,2013,27(3):216-222. [百度学术]
YU Y,LI J,NIU J,et al.The stability and repeatability of high temperature electrical properties of SiAlCN ceramic sensor heads[J].Ceramics International,2019,45(6):7588-7593. [百度学术]
DHAMNE A,XU W,FOOKES B G, et al. Polymer–ceramic conversion of liquid polyaluminasilazanes for SiAlCN ceramics[J]. Journal of the American Ceramic Society,2010, 88(9):2415-2419. [百度学术]
陈江溪. 碳化硅基陶瓷纤维用有机硅高分子的合成与表征[D].厦门:厦门大学, 2007. [百度学术]
CHEN J X.Synthesisi and characterization of organosilicon polymers for Sic-based ceramic fibers [D].Xiamen:Xiamen University, 2007. [百度学术]
CHEN L,ZHANG L,CAI Z, et al.Effects of oxidation curing and sintering additives on the formation of polymer-derived near-stoichiometric,silicon carbide fibers[J].Journal of the American Ceramic Society, 2008,91(2):428-436. [百度学术]
ZHAO D, LI X, HAO W,et al.Effects of oxygen content on the properties of ultra-high-temperature resistant Si-Al-C fibers[J].Key Engineering Materials 2008, 368-372 (2):1774-1777. [百度学术]
CHEN L,ZHANG L,CAI Z,et al. Effects of oxidation curing and sintering additives on the formation of polymer-derived near-stoichiometric silicon carbide fibers[J]. Journal of the American Ceramic Society, 2008, 91(2):428-436. [百度学术]
袁钦,宋永才,王国栋.聚铝碳硅烷不熔化纤维中氧含量的调节[J].高等学校化学学报,2015,36(6):1213-1220. [百度学术]
YUAN Q,SONG Y C,WANG G D.Adjusting the oxygen content of the cured polyaluminocarbosilane fibers[J]. Chemical Journal of Chinese Universities, 2015,36(6):1213-1220. [百度学术]
SORARU G D,RAVAGNI A,CAMPOSTRINI R, et al.Synthesis and characterization of β-Sialon ceramics from organosilicon polymers[J].Journal of the American Ceramic Society,1991,74(9):2220-2223. [百度学术]
甄霞丽,裴学良,钟希强,等. 基于聚硅碳硅烷与仲丁醇铝制备含铝碳化硅纤维[J].合成纤维,2018,47(9):25-31. [百度学术]
ZHEN X L, PEI X L, ZHONG X Q, et al.Synthesis of aluminum-containing SiC fibers based on polysilancarbosilane and aluminumtri-sec-butoxide[J].Synthetic Fiber in China, 2018,47(9):25-31. [百度学术]
WANG Y,AN L,FAN Y,et al.Oxidation of polymer-derived SiAlCN ceramics[J]. Journal of the American Ceramic Society, 2005,88(11):3075-3080. [百度学术]
WANG Y,FAN Y,ZHANG L,et al. Polymer-derived SiAlCN ceramics resist oxidation at 1 400 °C[J]. Scripta Materialia,2006,55(4):295-297. [百度学术]
USUKAWA R, ISHIKAWA T. Effect of Al contained in polymerderived SiC crystals on creating stable crystal grain boundaries[J].International Journal of Applied Ceramic Technology,2021, 18(1):6-11. [百度学术]
余煜玺. 含铝碳化硅纤维的连续化制备与研究 [D].长沙:国防科学技术大学, 2005. [百度学术]
YU Y X.Preparation and investigation of continous aluminum-containing silicon carbide fibers[D].Changsha:National University of Defence Technology, 2005. [百度学术]
WANG P, LIU F, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology, 2019,35(12):2743-2750. [百度学术]
曹适意. KD系列连续碳化硅纤维组成、结构与性能关系研究 [D].长沙: 国防科学技术大学, 2017. [百度学术]
CAO S Y.Relationship between composition, microstructure and properties of KD series continuous silicon carbide fibers [D].Changsha:National University of Defence Technology, 2017. [百度学术]
袁钦. 第三代连续SiC纤维制备过程基础研究 [D] 长沙:国防科学技术大学, 2016. [百度学术]
YUAN Q.Basic research on preparation of the third generation continuous SiC fiber [D].Changsha:National University of Defence Technology, 2016. [百度学术]
SEO D,JUNG S,LOMBARDO S J,et al.Fabrication and electrical properties of polymer-derived ceramic (PDC) thin films for high-temperature heat flux sensors[J].Sensors & Actuators A Physical,2011,165(2):250-255. [百度学术]
姚荣迁,冯祖德,张冰洁,等. 连续含铝SiC自由膜的制备与发光特性研究[J]. 功能材料,2008,39(11):1781-1784. [百度学术]
YAO R Q,FENG Z D,ZHANG B J,et al.Fabrication and photoluminescence properties of continuous freestanding SiC(Al) films[J].Journal of Functional Materials,2008,39(11):1781-1784. [百度学术]
RAN Z,GANG S,CAO Y,et al.Temperature sensor made of polymer-derived ceramics for high-temperature applications[J]. Sensors & Actuators A Physical ,2014, 219:58-64. [百度学术]
YANG B, ZHOU X, YU J Y, et al.The properties of Cf/SiC composites prepared from different precursors[J]. Ceramics International,2015,41(3):4207-4213. [百度学术]