摘要
采用交替真空抽滤制备Ti3C2Tx MXene/WPU复合双层薄膜,用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了微观形貌,X射线衍射仪(XRD)测试了晶体结构,通过矢量网络分析仪测试了电磁屏蔽性能。结果表明,可以通过超声离心制备出少层Ti3C2Tx;复合双层薄膜具有高韧性、高导电性以及优异的电磁屏蔽性能,表面电阻为3.57 Ω;电磁屏蔽性能结果表明,MWPU3:1的复合薄膜屏蔽性能为37.9 dB。在X波段与K波段,MWPU3:1复合薄膜性能较为优异,且复合薄膜是吸收型电磁屏蔽材料。
关键词
随着5G无线通讯系统的逐渐发展和应用,高集成化的电子通信和电子设备迅速发展,产生的电磁辐射和干扰问题已经不可避免,航天、医疗以及军事等领域正在面临着严峻挑
盐酸、氟化锂从成都科隆试剂有限公司购买;Ti3AlC2 MAX粉末(纯度99%,400目)采购自福斯曼科技(北京)有限公司;水性聚氨酯(40%)购自广州誉衡新材料有限公司。以上所有化学试剂均为分析纯。
1.56 g氟化锂和20 mL 9 M HCl (37%)在聚四氟乙烯烧杯中常温搅拌5 min,形成均相溶液确保氟化锂完全溶解。然后将1 g Ti3AlC2粉末加入混合溶液中,在油浴40 ℃下磁力搅拌36 h。将混合后的溶液在8 000 r/min下离心多次,确保上清液的pH>6。然后将沉淀物分散在250 mL去离子水中,在冰浴下超声处理30 min。随后以3 500 r/min离心30 min,收集上层深绿色液体,即剥离后的少层Ti3C2Tx分散液,用于后续实验。
制备流程图见

图1 MWPU复合双层薄膜制备流程示意图
Fig.1 The preparation process of MWPU composite
double-layer films
首先将刻蚀好的少层Ti3C2Tx悬浮液(约1.25 g/L)分别取5、10、15 mL,通过真空过滤到滤纸上。随后将5 mL3%的水性聚氨酯溶液以同样的方式过滤在Ti3C2Tx凝胶上。然后在60 ℃真空烘箱中干燥1 h形成Ti3C2Tx MXene/WPU复合薄膜,薄膜厚度分别为27.4、32.5、37.3 μm。经过计算薄膜面密度为0.43、0.86、1.29 mg/c
Ti3C2Tx纳米片微观形貌和MWPU复合双层薄膜截面结构如

(a) Ti3C2Tx纳米片TEM图

(b) Ti3C2Tx胶体的“丁达尔”

(c) MWPU复合薄膜光学照片

(d) MWPU复合薄膜SEM图
图2 Ti3C2Tx纳米片微观形貌和MWPU复合双层薄膜
Fig.2 TEM image of Ti3C2Tx nanosheets,SEM image of MWPU composite double-layer films
截面结构
从

图3 Ti3AlC2 、Ti3C2Tx、MWPU复合薄膜XRD图
Fig.3 XRD pattern of Ti3AlC2, Ti3C2Tx, MWPU composite double-layer film
样品测试如

图4 波导管法测试示意图与夹具照片
Fig.4 The schematic diagram of waveguide method and photos of fixture

图5 MWPU复合双层薄膜表面电阻
Fig.5 Surface resistance of MWPU composite double-layer films

图6 MWPU复合双层薄膜平均电磁屏蔽图
Fig.6 Average of EMI SE of MWPU composite double-layer films

图7 MWPU复合双层薄膜总电磁屏蔽图
Fig.7 The EMI SEA of MWPU composite double-layer films

图8 MWPU复合双层薄膜吸收损耗SEA图
Fig.8 The EMI SET of MWPU composite double-layer films

图9 不同频率下MWPU复合双层薄膜的SEA/SER
Fig.9 Ratio of SEA/SER of MWPU composite double-layer films
随着体积比的逐渐增大,MWPU复合双层薄膜平均电磁屏蔽性能也从19.01升至34.28 dB。另一方面,MWPU复合双层薄膜的电磁屏蔽和吸收损耗SEA也随体积比的增加而增大,通过图可以看到复合材料的电磁屏蔽和吸收损耗SEA最高可以达到37.9和33.8 dB,其与表面电阻变化规律完全一致。因此,MWPU复合双层薄膜在抗电磁屏蔽领域具有潜在应用价值。2~18 GHz频率范围内不同样品的吸收损耗SEA与反射损耗SER比值曲线如
(1)通过逐层真空抽滤制备的MWPU复合双层薄膜,此结构既可减少Ti3C2Tx与空气的接触面积降低其氧化概率,而水性聚氨酯的加入能提高薄膜整体的柔性度。
(2)随着体积比的增加,MWPU复合双层薄膜的表面电阻逐渐降低至3.57 Ω,而测试电阻误差也降低至0.08 Ω。
(3)在2~18 GHz频率范围内,电磁屏蔽性能随体积比的增大而增加,而MWPU3:1复合薄膜屏蔽性能为37.9 dB。通过MWPU复合双层薄膜吸收损耗SEA与反射损耗SER的比值得到在X波段与K波段,复合薄膜的吸收损耗SEA在电磁屏蔽中占主导地位。
参考文献
MA Z L,KANG S L,MA J Z,et al.Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J].ACS Nano,2020,14(7):8368-8382. [百度学术]
高晓东,杨卫民,程礼盛,等.导电玻璃纤维及其功能复合材料研究进展[J].复合材料学报,2021,38(1): 1-10. [百度学术]
GAO X D, YANG W M, CHENG L S, et al. Recent research progressing conductive glass fiber and polymer-based functional composites[J]. Acta Materiae Compositae Sinica,2021,38(1):1-10. [百度学术]
李金晶, 王钧. PS微球对导电复合材料介电性能及电磁屏蔽性能的影响[J]. 玻璃钢/复合材料, 2015(3): 40-44. [百度学术]
LI J J, WANG J. Study on the addition of PS microspheres to the dielectric and EMI properties of the electrical composites[J]. Composites Science and Engineering, 2015(3): 40-44. [百度学术]
TURCZYN R, KRUKIEWICZ K, KATUNIN A, et al. Fabrication and application of electrically conducting composites for electromagnetic interference shielding of remotely piloted aircraft systems[J]. Composite Structures, 2020,232: 111498. [百度学术]
XU M, WANG Y Y, LI X L, et al. Analysis of the influence of the structural parameters of aircraft braided-shield cable on shielding effectiveness[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(4): 1028-1036. [百度学术]
YIN X M, LI H J, HAN L Y, et al. Lightweight and flexible 3D graphene microtubes membrane for high-efficiency electromagnetic-interference shielding[J].Chemical Engineering Journal, 2020,387: 124025. [百度学术]
HU Z K, JI X X, LI B Y,et al.A self-assembled graphene/polyurethane sponge for excellent electromagnetic interference shielding performance[J].RSC Advances,2019,9(44):25829-25835. [百度学术]
WANG Q W,ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7): 1806819. [百度学术]
李勉,黄庆. 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望[J].无机材料学报,2020,35(1):1-7. [百度学术]
LI M, HUANG Q, Recent progress and prospects of ternary layered carbides/nitrides (MAX phases) and their derived two- dimensional nanolaminates (MXenes)[J].Journal of Inorganic Materials,2020,35(1):1-7. [百度学术]
ALHABEB M,MALESKI K,ANASORI B,et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J].Chemistry of Materials, 2017, 29(18): 7633-7644. [百度学术]
刘冰洁, 刘艳, 周国伟. 二维MXenes基复合材料的制备及在电化学领域的应用研究进展[J].化工新型材料, 2020,48(10):1-5. [百度学术]
LIU B J, LIU Y, ZHOU G W. Research progress on preparation of MXenes composites and their applications in electrochemistry[J].New Chemical Materials, 2020, 48(10): 1-5. [百度学术]
REN Y Y, ZHU J F, WANG L, et al. Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors[J]. Materials Letters, 2018,214(MAR.1): 84-87. [百度学术]
LI M H, FANG L, ZHOU H, et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor[J]. Applied Surface Ence, 2019, 495: 143554. [百度学术]
LI N, CHEN X, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides(MXenes)[J]. ACS Nano, 2017, 11(11): 10825-10833. [百度学术]
张恒宇,张宪胜,肖红, 等. 二维碳化物在柔性电磁吸波领域的研究进展[J].纺织学报,2020, 41(3): 182-187. [百度学术]
ZHANG H Y, ZHANG X S, XIAO H, et al. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing[J]. Journal of Textile Research, 2020, 41(3): 182-187. [百度学术]
吕通,张恩爽,原因, 等. 大片单层低缺陷MXene的制备及其膜材料的电磁屏蔽性能[J].高等学校化学学报, 2019, 40(10): 2059-2066. [百度学术]
LYU T, ZHANG E S, YUAN Y, et al. Preparation of large-size single layer MXene with low defect and electromagnetic shielding performance of MXene film[J]. Chemical Journal of Chinese Universities ,2019, 40(10): 2059-2066. [百度学术]
ZHEN W, CHENG Z, FANG C Q, et al. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136:105956. [百度学术]
CAO M S,CAI Y Z,HE P,et al.2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding[J].Chemical Engineering Journal, 2019,359:1265-1302. [百度学术]
ALHABEB M,MALESKI K,ANASORI B,et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J].Chemistry of Materials,2017,29(18):7633-7644. [百度学术]
HAN J C, WANG X N, QIU Y F, et al. Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding[J]. Carbon, 2015,87(1):206-214. [百度学术]
YOUSEFI N, SUN X Y, LIN X Y, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding[J]. Advanced Materials, 2015,26(31):5480-5487. [百度学术]
HE P, CAO M S, SHU J C, et al. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy[J]. ACS Applied Materials & Interfaces,2019,11(13): 12535-12543. [百度学术]
CAO M S, WANG X X, CAO W Q, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion[J]. Small, 2018,14(29): 1800987. [百度学术]