en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
马宏林.航空航天用树脂基复合材料[J].宇航材料工艺,1996(2):36-39.
参考文献 2
陈烈民.碳纤维复合材料在卫星上的应用趋势[J].宇航材料工艺,1993,23(4):5-7.
参考文献 3
郭玉明,冯志海,王金明.高性能 PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7.
参考文献 4
THOSTENSONET,RENZ,T-WCHOUhou. Advances in the science and technology of carbon nanotubes and their composites:a review[J].Composites Science and Technology,2001,61(13):1899-1912.
参考文献 5
ALLENM J,TUNGV C, KANERR B.Honeycomb carbon:a review of graphene[J].Chemical Reviews,2010,110(1):132-145.
参考文献 6
LEEC,WEIXD, KYSARJ W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
参考文献 7
BALANDINA A,GHOSHS,BAOW,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008,8(3):902-907.
参考文献 8
KELLYB T.The thermal expansion coefficient of graphite parallel to the basal planes[J].Carbon,1972,10(4):429-433.
参考文献 9
STOLLERM D,PARKS,ZHUY,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.
参考文献 10
KIMH,ABDALAA A,MACOSKOC W.Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530.
参考文献 11
JUNY S,UMJ G,JIANGG,et al.Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties[J].Composites Part B:Engineering,2018,133:218-225.
参考文献 12
ZHOUD,CUIY,XIAOP W,et al.A general and scalable synthesis approach to porous graphene[J].Nature communications,2014(5):4716.
参考文献 13
XUK,FUY,ZHOUY,et al.Cationic nitrogen-doped helical nanographenes[J].Angew Chem.Int.Ed.Engl.,2017,56(50):15876-15881.
参考文献 14
CAIJ,RUFFIEUXP,JAAFARR,et al.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,466(7305):470-473.
参考文献 15
RUFFIEUXP,WANGS,YANGB,et al.On-surface synthesis of graphene nanoribbons with zigzag edge topology[J].Nature,2016,531(7595):489-492.
参考文献 16
XUY,LIUZ,ZHANGX,et al.A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property[J].Advanced Materials,2009,21(12):1275-1279.
参考文献 17
WUQ,SUNY,BAIH,et al.High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties[J].Phys.Chem.Chem. Phys.,2011,13(23):11193-11198.
参考文献 18
ZHANGX,FENGY,TANGS,et al.Preparation of a graphene oxide-phthalocyanine hybrid through strong π-π interactions[J].Carbon,2010,48(1):211-216.
参考文献 19
BAIH,XUY,ZHAOL,et al.Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J].Chem. Commun.(Camb.),2009(13):1667-1669.
参考文献 20
YANGX,ZHANGX,LIUZ,et al.High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J].The Journal of Physical Chemistry C,2008,112(45):17554-17558.
参考文献 21
PATILA J,VICKERYJ L,SCOTTT B,et al.Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J].Advanced Materials,2009,21(31):3159-3164.
参考文献 22
VALLéSC,DRUMMONDC,SAADAOUIH,et al.Solutions of negatively charged graphene sheets and ribbons[J].Journal of the American Chemical Society,2008,130(47):15802-15804.
参考文献 23
CHANGH,WANGG,YANGA,et al.A Transparent,flexible,low-temperature,and solution-processible graphene composite electrode[J].Adv.Funct.Mater.,2010,20(17):2893-2902.
参考文献 24
XUZ,LIUY,ZHAOX,et al.Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J].Advanced Materials,2016,28(30):6449-6456.
参考文献 25
LIZ,XUZ,LIUY,et al. Multifunctional non-woven fabrics of interfused graphene fibres[J].Nature Communications,2016(7):13684.
参考文献 26
XUZ,GAOC.Graphene chiral liquid crystals and macroscopic assembled fibres[J].Nature Communications,2011(2):571.
参考文献 27
XING,YAOT,SUNH, et al.Highly thermally conductive and mechanically strong graphene fibers[J].Science,2015,349(6252):1083.
参考文献 28
SHAOY,WANGJ,WUH, et al.Graphene based electrochemical sensors and biosensors:a review[J].Electroanalysis,2010,22(10):1027-1036.
参考文献 29
KWAKJ,CHUJ H, CHOIJ K,et al. Near room-temperature synthesis of transfer-free graphene films[J].Nature Communications,2012(3):645.
参考文献 30
CHENJ,GUOY,WENY,et al.Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J].Advanced Materials,2013,25(7):992-997.
参考文献 31
WANGG,ZHANGM,ZHUY,et al.Direct growth of graphene film on germanium substrate[J].Sci. Rep.,2013(3):2465.
参考文献 32
NGUYENS T,NGUYENT,RINALDIA,et al. Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:352-358.
参考文献 33
DAIG P,WUM H,TAYLORD K,et al.Hybrid 3D graphene and aligned carbon nanofiber array architectures[J].Rsc. Adv.,2012,2(24):8965-8966.
参考文献 34
SHIH,LIY,GUOT.In situpreparation of transparent polyimide nanocomposite with a small load of graphene oxide[J].J Appl. Polym.Sci.,2013,128(5):3163-3169.
参考文献 35
WANGX,HUY,SONGL,et al.In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J].Journal of Materials Chemistry,2011,21(12):4222-4227.
参考文献 36
QinW Z,VautardF,DrzalL T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B-Engineering,2015,69:335-341.
参考文献 37
KIMH,MACOSKOC W.Processing-property relationships of polycarbonate/graphene composites[J].Polymer,2009,50(15):3797-3809.
参考文献 38
WANY J,TANGL C,YAND, et al.Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J].Composites Science and Technology,2013,82:60-68.
参考文献 39
WANGX,XINGW,ZHANGP,et al.Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J].Composites Science and Technology,2012,72(6):737-743.
参考文献 40
RAFIEEM A,RafieeJ,WANGZ, et al.Enhanced mechanical properties of nanocomposites at low graphene content[J].Acs. Nano.,2009,3(12):3884-3890.
参考文献 41
SHADLOUS,AHMADIM B,TAHERIF.The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites[J].Materials & Design,2014,59:439-447.
参考文献 42
BOSES,DASA,BASUS,et al.Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite[J].Polym Composite,2018,39(9):3119-3128.
参考文献 43
CHHETRIS,SAMANTAP,MURMUC,et al.Effect of dodecyal amine functionalized graphene on the mechanical and thermal properties of epoxy-based composites[J].Polymer Engineering & Science,2016,56(11):1221-1228.
参考文献 44
WANGX,JINJ,SONGM.An investigation of the mechanism of graphene toughening epoxy[J].Carbon,2013,65:324-333.
参考文献 45
CHANDRASEKARANS,SATON,TöLLEF,et al. Fracture toughness and failure mechanism of graphene based epoxy composites[J].Composites Science and Technology,2014,97:90-99.
参考文献 46
BORTZD R,HERASerasE G,MARTING I.Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites[J].Macromolecules,2011,45(1):238-245.
参考文献 47
CHHETRIS,ADAKN C,SAMANTAP,et al. Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites[J].J Appl. Polym. Sci.,2018,135(15):46114-46124.
参考文献 48
YOUSEFIN,LINX, ZHENGQ, et al.Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites[J].Carbon,2013,59:406-417.
参考文献 49
POKHARELP,TRUONGQ T,LEED S.Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites[J]. Composites Part B:Engineering,2014,64:187-193.
参考文献 50
TENGC C,MA C M,LUC H,et al.Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J].Carbon,2011,49(15):5107-5116.
参考文献 51
FUuY X,HEZ X,MOD C,et al.Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives[J].International Journal of Thermal Sciences,2014,86:276-283.
参考文献 52
HUANGX,ZHIC,JIANGP.Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J].The Journal of Physical Chemistry C,2012,116(44):23812-23820.
参考文献 53
SHAHILM,BALANDINA A.Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J].Nano. Lett.,2012,12(2):861-877.
参考文献 54
HOUZ L,SONGW L,WANGP,et al.Flexible graphene-graphene composites of superior thermal and electrical transport properties[J].ACS Appl.Mater.Interfaces,2014,6(17):15026-15032.
参考文献 55
ZHANGC,LIT,SONGH,et al.Improving the thermal conductivity and mechanical property of epoxy composites by introducing polyhedral oligomeric silsesquioxane-grafted graphene oxide[J].Polym.Composite,2018,39(S3):E1890-E1899.
参考文献 56
WANGS,TAMBRAPARNIM,QIUJ,et al.Thermal expansion of graphene composites[J].Macromolecules,2009,42(14):5251-5255.
参考文献 57
JIAJ,SUNX,LINX, et al.Exceptional Electrical conductivity and fracture resistance of 3D Interconnected graphene foam/epoxy composites[J].Acs. Nano.,2014,8(6):5774-5783.
参考文献 58
SHENM Y,CHANGT Y,HSIEHT H,et al.Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites[J].Journal of Nanomaterials,Article ID 565401,9 pages,2013.https://doi.org/10.1155/2013/565401.
参考文献 59
MANNOVE,SCHMUTZLERH,CHANDRASEKARAN,et al. Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide[J].Composites Science and Technology,2013,87:36-41.
参考文献 60
YANGX,WANGZ,XUM,et al.Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet[J].Materials & Design,2013,44:74-80.
参考文献 61
HAWKINSD A,HAQUEA.Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites[J].Procedia Engineering,2014,90:176-181.
参考文献 62
YAVARIF,RAFIEEM A,alRAFIEEet.Dramatic increase in fatigue life in hierarchical graphene composites[J].ACS Appl. Mater. Interfaces,2010,2(10):2738-2743.
参考文献 63
LIUL,XIAOL,ZHANGX,et al.Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene[J].Rsc.Adv.,2015,5(71):57853-57859.
参考文献 64
RAMOSF G,MUNOZM,GARCíAQJ C,et al.Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites[J].Polym. Composite,2017,39(S4):E2116-E2124.
参考文献 65
ADAKN C,CHHETRIS,KUILAT,et al.Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J].Composites Part B:Engineering,2018,149:22-30.
参考文献 66
QINW,VAUTARDF,DRZALL T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B:Engineering,2015,69:335-341.
参考文献 67
CHENJ,ZHAOD,JINX, et al.Modifying glass fibers with graphene oxide:towards high-performance polymer composites[J].Composites Science and Technology,2014,97:41-45.
参考文献 68
HUSSAINS,YORUCUC,AHMEDI,et al.Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites[J].Surface and Coatings Technology,2014,258:458-466.
参考文献 69
JEONGY G,BAIKD H,JANGJ W,et al. Preparation, structure and properties of poly(p-phenylene benzobisoxazole) composite fibers reinforced with graphene[J].Macromolecular Research,2014,22(3):279-286.
参考文献 70
GHIDIUMM,LUKATSKAYAM R,ZHAOM Q,et al.Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J].Nature,2014,516(7529):78-81.
参考文献 71
一种石墨烯改性的碳纤维上浆剂的制备方法及其产品.CN105862428A.
参考文献 72
LIUL,YANF,LIM,et al.Self-assembly of graphene aerogel on carbon fiber for improvement of interfacial properties with epoxy resin[J].Mater. Lett.,2018,218:44-46.
参考文献 73
ALUKOO,GOWTHAMS,ODEGARDG M. Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite[J].Composites Part B:Engineering,2017,131:82-90.
参考文献 74
YAOX,GAOX,JIANGJ,et al.Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J].Composites Part B:Engineering,2018,132:170-177.
参考文献 75
WANGC,LIJ,YUJ,et al.Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J].Composites Part A:Applied Science and Manufacturing,2017,101:511-520.
目录 contents

    摘要

    主要介绍石墨烯改性环氧树脂复合材料力学、热学、电学性能的研究进展,以及石墨烯在碳纤维/环氧树脂功能型复合材料中的应用,并展望结构-功能一体化石墨烯改性复合材料在航天领域的应用前景。

    Abstract

    A comprehensive review is presented to introduce the latest progress of mechanical,thermal and electrical properties of graphene/epoxy nano composites,and the application of graphene in carbon fiber/epoxy functional composites.The future perspectives of graphene / epoxy nanocomposites in aerospace filed were concluded.

  • 0 引言

    0

    碳纤维复合材料因其具有轻质高强的特性被广泛应用于航空航天领域,如导弹的整流罩、卫星的主承力结构、太阳翼基板、天线、相机结构[1,2,3]

    目前,复合材料在航天领域主要用于承力结构,随着新型航天器对材料要求的提高,集功能-结构于一体的功能型碳纤维复合材料成为研究热点,具有高尺寸稳定性(低热胀系数)、高导电、高导热特性的碳纤维复合材料尤为令人关注。

    对高分辨对地观测卫星而言,大型相机支架的尺寸稳定性直接影响卫星的分辨率和成像质量稳定性。根据ESA材料标准手册ESA-PSS-03-203,低热变形是卫星用高稳定性碳纤维复合材料的关键。目前,卫星高尺寸稳定结构主要使用M55、M60等具有高模量、低热胀系数的碳纤维制备,而在C/E复合材料中,当树脂含量为30%~40%时,降低树脂的热胀系数有利于减小温度交变引起的复合材料界面热应力,并进一步降低C/E的热胀系数,提高其尺寸稳定性。

    复合材料作为卫星的主要承力结构,会布置大量的星载设备。载荷在使用过程中发热,需要依托铝面板蜂窝夹芯结构板及其内置或者外贴的热管进行散热。鉴于铝面板夹芯结构密度较大,用C/E部分或者全部代替铝面板夹芯结构是航天器发展的一大趋势。而导热性差是制约复合材料应用的瓶颈,如果在一定程度上提高复合材料的导热性能,可以减少热控资源的使用,降低热控质量。

    卫星运行期间,整个星体需要满足“等电位”要求,即卫星“接地技术”。“接地技术”的核心是所有荷载或设备就近在复合材料结构上做接地连接,这些复合材料结构包括卫星承力筒以及复合材料蜂窝夹芯板。理想的接地结构应是零电位、零阻抗的物理实体,是信号电平的参考点,对任何不需要的电流无压降。复合材料结构产品电阻较高,难以满足“接地技术”对零电位的需求。现在的解决办法是在结构产品上贴导电材料,其结果就是增加航天器的结构质量。因此,提高复合材料结构的导电性是解决这一问题的核心。

    功能型碳纤维复合材料在未来航天领域有着十分广泛的应用前景,随着功能性纳米材料如碳纳米管、石墨烯基础与应用研究的深入,为结构-功能一体化复合材料提供了全新的机遇,利用纳米材料导电、导热的特性,使得多功能C/E复合材料成为可[4]。本文主要介绍石墨烯在功能型碳纤维复合材料中的研究进展。

  • 1 石墨烯及其聚集体结构

    1
  • 1.1 石墨烯及其物理化学结构

    1.1

    石墨烯是由单层碳原子通过sp2杂化,紧密堆积而成的二维蜂窝状平面结构碳材料。作为一种二维蜂窝状结构单原子厚度的石墨片,石墨烯具有一系列独特的力学、电学以及热学性质。根据相关的试验与理论分析,石墨烯理论比表面积高达2 630 m2/g[5],即面密度为0.77 mg/m2。石墨烯的弹性模量达到l.0 TPa,断裂强度能达到130 GPa[6]。理论上单原子层的石墨烯热导率可达5 kW/(m·K[7]。室温下热胀系数为-1.5×10-6/K[8]。另外,石墨烯具有良好的导电性,其导电率可以达到6 000 S/cm[9]。石墨烯一般通过直接机械剥离、外延生长和化学气相生长、还原氧化石墨烯(GO)法制[10],然而大部分制备方法并不适合规模化。目前,常用的方法是利用氧化石墨烯作为前驱体制备石墨烯。另外一种能够量产的是石墨烯微片(GNPs),GNPs是厚度在100 nm以内的多层石墨烯片层的结合体,与石墨烯相比,GNPs的制备过程更为简单且成本较低,并具有优异的力学和导电、导热性能,是一种理想的聚合物基复合材料增强[11]

    在石墨烯研究基础上,科研工作者还制备了一些具有特殊物理、化学结构的石墨烯。国家纳米科学中心的韩宝航发展了一种可放大且适用范围广的多孔石墨烯制备方法,将石墨烯氧化物和金属氧酸盐或多金属氧酸盐在高温条件下产生石墨烯与金属氧化物纳米颗粒,两者之间发生类似于焦炭高炉炼铁过程中的碳热还原反应,金属氧化物被石墨烯上的碳还原成金属或形成金属碳化物,而参与碳热还原反应的碳原子以CO2或CO形式离开石墨烯片层,从而在石墨烯片层上刻蚀出纳米级的孔隙,即形成多孔石墨烯(图1)[12]。德国德累斯顿工业大学冯新亮教授团队报道了具有非平面几何结构和轴向手性的新型阳离子氮掺杂纳米石墨烯(CNDNs)的设计与合成,并通过单晶X射线分析揭示了其螺旋和凹陷结[13]。瑞士联邦材料科学与技术实验室(EMPA)的P.Ruffieux1[14]人在2010年发现,通过设计石墨烯的纳米结构,使之变形为石墨烯纳米带(GNR)之后,这种材料就具有了类似半导体材料的性质。最近,他们再次做出突破,首次合成具有完美锯齿形边缘的石墨烯纳米带(ZGNR),让科学家们可以赋予石墨烯纳米带更多不同的性[15]

    图1
                            多孔石墨烯SEM图片

    (a) 侧视图                           (b) 俯视图

    图1 多孔石墨烯SEM图片

    Fig.1 SEM images of the pGRF samples

  • 1.2 石墨烯化学修饰

    1.2

    功能化(也称为掺杂)是指通过物理或化学方法将特定官能团添加到石墨烯结构上。由于石墨烯表面惰性强,与聚合物之间的相容性较差,石墨烯的功能化是提高石墨烯与聚合物界面性能的有效途径。一般而言石墨烯的表面改性可以分为共价键改性和非共价键改性。石墨烯的共价键改性主要利用氧化石墨烯表面存在大量的羟基、羧基、环氧基等活性基团的特点,通过化学反应将需要的特定的化学分子引入到石墨烯上。XU[16]将氧化石墨烯在氮气气氛中使用SOCl2回流,然后通过共价键的方式将卟啉环固定在氧化石墨烯表面,获得的稳定分散的氧化石墨烯分散液(图2)。WU[17]利用2-氨基蒽醌(AAQ)的氨基与氧化石墨烯表面的环氧官能团反应,合成得到蒽醌修饰的氧化石墨烯(AQGO)。

    图 2
                            共价修饰的TPP-NHCO-SPF石墨烯

    图 2 共价修饰的TPP-NHCO-SPF石墨烯

    Fig.2 Schematic representation of part of TPP-NHCO-SPF Graphene

    非共价键改性是通过石墨烯和目标分子之间形成的非共价键吸附力,将目标分子吸附到石墨烯表面,从而获得非共价键改性石墨烯。主要包括:π-π 键相互作[18,19、氢键作[20,21]、离子键作[22,23]。非共价键改性最大的特点是不会破坏石墨烯本身的物理化学结构,从而在一定程度上保持了石墨烯固有的导电、导热等特性,是制备功能型复合材料的优选改性方法。

  • 1.3 石墨烯的聚集体结构

    1.3

    除了石墨烯本身,石墨烯的各种聚集态结构也备受关注,石墨烯纤维、石墨烯薄膜、石墨烯泡沫、石墨烯改性树脂是研究的重点。

  • 1.3.1 石墨烯纤维

    1.3.1

    石墨烯纤维是一种由石墨烯或者功能化石墨烯纳米片的液晶原液经湿法纺丝一维有序组装而成新型纤维。高[24,25]教授发现了氧化石墨烯液晶及二维胶粒的手性液晶相,提出并实现了连续石墨烯纤维的制备。课题组将氧化石墨烯液晶纺丝液通过湿法纺丝工艺纺丝,在流场和凝固浴的作用下形成凝胶纤维,依次经过水洗、干燥、还原等步骤,最终收集得到长度数米的石墨烯纤维(图3)26,该石墨烯纤维具有高导电性以及良好的力学性能。J.Lian课题[27]将石墨烯纤维经过高温处理后,其孔隙率降低,纤维内部的缺陷密度减小,从而制备出了强度为700~800 MPa,模量为100~20 GPa的石墨烯纤维。

    图3
                            氧化石墨烯及石墨烯纤维

    图3 氧化石墨烯及石墨烯纤维

    Fig.3 GO fibres and graphene fibres

  • 1.3.2 石墨烯薄膜

    1.3.2

    石墨烯制成的薄膜具有良好的透明性、导电性以及柔性等特点,在电子、光子及光电设备领域的应用范围十分广泛,极具发展前景。石墨烯薄膜的制备方法可以分为两类:(1)以SiO2、NB、Ge为衬底,通过CVD方法在其上沉积一层石墨[28,29,30];(2)通过抽滤的方法将石墨烯分散液制备成层层组装起来的石墨烯薄[31]

  • 1.3.3 石墨烯泡沫

    1.3.3

    石墨烯泡沫是由石墨烯片交错堆积而成的三维连通多孔结构。石墨烯泡沫的制备常采用自组装与模板法。自组装是采用氧化石墨烯溶液与还原剂发生氧化还原反应形成三维网络结构制备成凝胶,经过冷冻干燥去除溶剂,得到大孔隙率、力学及导电性好的石墨烯泡[32]。另一种常用的制备方法是模板法,以多孔的铜网或泡沫镍为模板,以乙炔、乙醇、甲烷等为碳源,使用CVD高温分解沉积形成石墨烯泡沫结[33]

  • 1.3.4 石墨烯改性树脂

    1.3.4

    石墨烯提高聚合物性能的关键在于其在树脂中的分散性和界面相容性。石墨烯与聚合物复合材料加工方法主要有三种:原位聚[34,35]、溶液共[36]、熔融共[37]。由于环氧树脂是小分子,因此,石墨烯/环氧树脂复合材料的制备可以归结于原位聚合。石墨烯的分散方法比较传统,主要通过超声分散、机械搅拌、三辊研磨等方法。同时为了提高石墨烯与树脂的界面性能,必须对其进行表面修饰,主要通过非共价键和共价键改性。

    在上述几种石墨烯结构中,石墨烯纤维和石墨烯改性树脂在航天结构复合材料领域有着潜在的应用前景,但是石墨烯纤维受限于产量和性能(与碳纤维相比),目前石墨烯改性树脂是最有可能的一种应用途径。

  • 2 石墨烯/环氧树脂(G/E)研究进展

    2
  • 2.1 G/E复合材料力学性能

    2.1

    WAN Yanjun等[38]通过加入表面活性剂(Triton-X100)改善石墨烯在环氧树脂中的相容性、分散性,提高G/E的界面强度。经过Triton改性后,Triton-graphene质量分数为1%时,其拉伸强度从(52.98±5.82) MPa提高到(83.43±5.90) MPa,提高了57%。WANG Xin等[39]研究了APTS改性对G/E复合材料力学性能的影响。经过APTS改性后,G/E复合材料拉伸强度提高了52%。分析认为:(1)改性后可以避免石墨烯团聚并提高其分散性;(2)氨基可以同环氧树脂形成化学键从而提高界面强度。美国伦斯勒理工学院的Mohammad A.Rafiee等[40]研究了低质量分数的单壁碳纳米管、多壁碳纳米管以及氧化石墨对复合材料拉伸性能的影响。在相同质量分数时,与纯环氧树脂相比,G/E复合材料拉伸强度提高了41%,而MWCNT/E复合材料为14%。G/E复合材料弹性模量提高了31%,而SWCNT/E复合材料仅为3%。Shahin Shadlou等[41]研究了应变速率对G/E压缩性能的影响。环氧树脂和G/E复合材料的压缩强度和模量均随着应变速率的增大而增大。且随着应变速率的增加,石墨烯增强环氧树脂的效果变差。BOSE等[42]制备了共价键修饰G/E复合材料,当石墨烯质量分数为1.0%时,其弯曲强度和模量均提高了约15%。CHHETRI等[43]研究了月桂胺修饰石墨烯对环氧树脂力学性能的影响,月桂酸修饰石墨烯质量分数为0.5%时,拉伸强度提高了38.8%。

    WANG Xiao等[44]研究了氧化石墨烯尺寸对G/E复合材料性能的影响。首先通过控制工艺参数用Hummer法制备氧化石墨烯,制备出GO-1(D50=0.79 μm),GO-2(D50=1.72 μm),GO-3(D50=0.70 μm)三种不同规格的氧化石墨烯。G/E复合材料的制备过程如下:(1)将制备的氧化石墨烯在丙酮中超生分散30 min;(2)将计算好的环氧树脂(DGEBA)加入混合液,升温至80 ℃并搅拌1 h;(3)在真空烘箱中80 ℃放置12 h以除去小分子溶剂;(4)加入等当量的固化剂固化,制备相应的G/E复合材料样品。对于不同尺寸的G/E复合材料,其断裂韧度(KIC)均随石墨烯质量分数的增加先增大后减小,且石墨烯尺寸越小,其复合材料断裂韧度提高越明显。纯环氧树脂的KIC=1.32 MPa·m1/2,加入0.1%的GO-3,复合材料的断裂韧度提高了约75%。作者认为加入石墨烯后,石墨烯阻止裂纹生长及裂纹扩展是复合材料断裂韧度提高的主要原因。Swetha Chandrasekaran等[45]研究了热还原氧化石墨烯(TRGO)、纳米石墨烯片(GNPS)以及多壁碳纳米管(MWCNT)对环氧树脂断裂韧度的影响以及失效机制。当质量分数为0.5%时,TRGO/E复合材料的断裂韧度提高最为明显(约40%),GNPS/E复合材料提高了25%,MWCNT/E复合材料提高了8%。TRGO引起的裂纹钉扎或分叉以及裂纹面分离是断裂韧度提高的主要原因。Daniel R.Bortz等[46]的研究结果表明:G/E复合材料的断裂韧度及拉伸疲劳寿命随着石墨烯质量分数的增加而提高。添加量为1%时,与纯环氧树脂相比,KIC提高了63%,GIC提高了111%。拉伸疲劳寿命提高了1 580%。Saswata Bose等[42]通过在GNPs上接枝聚丙烯酰氯(PACl),然后制备成AGNP–PACl/E复合材料,在AGNP–PACl质量分数为1%时,复合材料的弯曲强度和模量均提高了约15%。Suman Chhetri等[47]通过3-氨基-1,2,4-三唑(3-amino-1,2,4-triazole)修饰氧化石墨烯,在质量分数仅为0.1%时,复合材料的KⅠC提高了110%。同时其Tonset提高了29 ℃。

    综上,通过优化石墨烯的片层厚度、片层尺寸及表界面性能,可以提高环氧树脂的综合力学性能。其中石墨烯的表面修饰尤为重要,因为石墨烯表面改性可以增强石墨烯与环氧树脂的相容性和界面粘结强度。

  • 2.2 G/E复合材料电学、热学、尺寸稳定性等

    2.2

    高导电、高导热是石墨烯作为功能化填料的一大优势。利用石墨烯的功能化特性制备功能-结构一体化复合材料具有广泛的应用前景。

    Nariman Yousefi等[48]研究了还原氧化石墨烯、自取向共价键修饰石墨烯对复合材料性能的影响。由于石墨烯的大尺寸、高取向以及与环氧树脂之间能形成强的共价键,复合材料的力学、电学以及热学性能均得到提高。在质量分数为0.2%时,其导电率为10-3 S/cm,可以满足的抗静电材料性能需求。Pashupati Pokharel等[49]通过多步微波法制备了氧化石墨烯。研究发现,辐照3 min制备的还原氧化石墨烯具有更高的导电性能,其导电阈值为0.3%,而辐照1 min时,其导电阈值为1%。同时由于石墨烯与环氧树脂之间具有良好的界面强度,其Tg提高了10 ℃。TENG Chihchun等[50]研究了非化学键功能化石墨烯(Py-PGMA-GO)改性环氧树脂复合材料的热导率。质量分数为4%时,Py-PGMA-GO/GFRP复合材料的热导率提高了800%。石墨烯的高比表面积有利于热传递和声子扩散,同时,Py-PGMA在石墨烯表面起到阻止石墨烯团聚和提高在环氧树脂中的分散性作用,从而提高其热导率。FU Yuanxiang等[51]研究表明添加质量分数为10.1%的G/E的热导率可以达到4.01 W/(m·K),与纯环氧树脂相比提高了2 200%,与质量分数为16.81%的石墨微片环氧树脂复合材料的相比提高了220%,与质量分数为44.3%的天然石墨粉末环氧树脂复合材料的相比提高了约240%。HUANG Xingyi等[52]发现,在总质量分数相同的条件下(40%),碳纳米管与石墨烯的混合物复合材料具有更高的热导率,为6.31 W/(m·K)。Khan M.F等[53]通过液相剥离法制备了单层石墨烯和多层石墨烯(10%~15%)混合复合材料。复合材料的热导率与石墨烯质量分数成正相关,质量分数2%的杂化石墨烯复合材料可以将体系的热导率提高到220 W/(m·K)。HOU Zhiling等[54]用多层石墨烯代替还原氧化石墨,避免了因为结构破坏而造成的RGO导热性能的下降。通过此种方法制备了石墨烯-石墨烯(GN−GN)复合材料。这种柔性的复合材料可以同时满足导电和导热需求。热导率可以达到220 W/(m·K),同时导电率85 000 S/m。ZHANG等[55]将POSS接枝到氧化石墨烯上,之后制备成POSS-G/E复合材料。在质量分数为1%时,其热导率提高了63.16%,而G/E仅提高了26.32%。WANG Shiren等[56]研究了石墨烯对环氧树脂热胀系数的影响。质量分数为4%时,复合材料的热导率比纯环氧树脂提高了4倍。在低于Tg时,其热胀系数降低了31.7%。JIA Jingjing等[57]通过Ni模板制备了多孔蜂窝结构石墨烯泡沫,之后将树脂浸入石墨烯泡沫制备复合材料。此复合材料中,石墨烯泡沫骨架起到导通电流的作用,其质量分数为0.2%时,复合材料的电导率可以达到3 S/cm。同时Tg提高了约31 ℃。

    由此可见,石墨烯对于提高环氧树脂导电导热性能、降低热胀系数方面效果明显,而提高环氧树脂的导电导热性能,石墨烯结构的相对完整性特别重要。

  • 3 石墨烯/碳纤维复合材料研究进展

    3

    在原有碳纤维复合材料的基础上,通过引入石墨烯作为第三相,可以制备石墨烯/碳纤维/环氧树脂多尺度复合材料。根据石墨烯在复合材料中的添加形式,可以分为两类:碳纤维/石墨烯改性环氧树脂复合材料和石墨烯改性碳纤维/环氧树脂复合材料。

  • 3.1 石墨烯/碳纤维增强复合材料

    3.1

    SHEN[58]的实验结果表明,向碳纤维增强树脂基复合材料中添加质量分数为0.25%的GNP,复合材料的疲劳寿命提高1.12~5.39倍。MANNOV[59]通过向树脂中添加GNP改进树脂基体,发现碳纤维增强树脂基复合材料在冲击后压缩强度最大增幅达到55%。YANG[60]的实验研究表明,向碳纤维增强树脂基复合材料中添加5%的GNP,材料的冲击强度提高了98.4%,而弯曲强度增加了70%。David A.Hawkins Jr等[61]制备了石墨烯环氧树脂以及碳纤维/石墨烯改性环氧树脂复合材料,与纯环氧树脂和C/E相比,加入石墨烯后,石墨烯环氧树脂的断裂韧度提高了约128%,而石墨烯碳纤维环氧树脂复合材料提高不是很明显,仅为11.4%。这主要是由于在碳纤维复合材料中,纤维主导断裂过程,而树脂基体对此影响有限。F.Yavari等[62]研究了多层石墨烯对玻璃纤维增强环氧树脂复合材料(GFRP)疲劳寿命的影响。结果表明:加入0.2%石墨烯后,GO/GFRP的弯曲疲劳寿命显著提高。

    TENG Chinchun等[50]研究了非化学键功能化石墨烯(Py-PGMA-GO)改性环氧树脂复合材料的热导率。质量分数为4%时,Py-PGMA-GO/GFRP复合材料的热导率提高了800%。石墨烯的高比表面积有利于热传递和声子扩散,同时,Py-PGMA在石墨烯表面起到阻止石墨烯团聚和提高在环氧树脂中的分散性作用,从而提高材料的热导率。FU Yuanxiang等[51]研究表明添加量为10.1%的石墨烯复合材料的热导率可以达到4.01 W/(m·K),与纯环氧树脂相比提高了2 200%,与质量分数为16.81%的石墨微片环氧树脂复合材料的相比提高了220%,与质量分数为44.3%的天然石墨粉末环氧树脂复合材料的相比提高了约240%。LIU等[63]通过球磨和热压等方法成功制备了聚醚醚酮/石墨烯/碳纤维(PEEK/GE/CF)层压板,研究表明石墨烯在聚醚醚酮基体中分散均匀,石墨烯的高热导使得层压板的热导率在石墨烯含量为0.7%时为0.332 W/(m·K)。同时,制备的PEEK/GE/CF层压板也具有优异的力学、耐磨及热性能。Gloria Ramos-Fernandez等[64]研究了氧化石墨烯对碳纤维复合材料I型层间断裂韧度的影响,氧化石墨烯的存在提高了树脂与纤维之间的界面强度,断裂韧度最高提高了60%。Nitai Chandra Adaka等[65]通过真空辅助树脂传递模塑工艺制备复合材料,研究了还原氧化石墨烯对编织碳纤维环氧树脂复合材料的影响,在rGO质量分数为0.2%时,其层剪强度提高了84%,冲击强度提高了100%。

  • 3.2 石墨烯改性碳纤维/环氧树脂复合材料

    3.2

    在另一种研究方案中,科学家们发现石墨烯可以改善碳纤维,尤其可以活化纤维表面,并提高纤维强度。

    QIN[66]的实验结果表明,通过石墨烯改性碳纤维表面,碳纤维方向的强度增加了7%,复合材料的横向强度增加了52%。CHEN[67]的实验显示,使用GNP改进碳纤维表面,可以大大增强碳纤维与树脂基体间的剪切强度。HUSSAIN[68]的实验研究表明,经过石墨烯对碳纤维的表面改性,碳纤维的强度增加了7.9%,而碳纤维与基体间的剪切强度增加了44.68%。JEONG[69]使用GNP改进碳纤维的力学性能,在碳纤维表面添加0.2%的石墨烯,碳纤维的失效应力增加了81.4%,而失效应变减小了6.5%。然而,在碳纤维表面添加0.5%的石墨烯时,碳纤维的失效应力和应变都增加了,分别增加了33.3%和6.5%。李超等[70]通过石墨烯改性上浆剂提高碳纤维复合材料的性能。首先制备了环氧树脂乳液和石墨烯分散液,之后将两者混合得到碳纤维石墨烯改性上浆剂,石墨烯上浆剂改性碳纤维复合材料的层剪强度为73.5 MPa。同时,由于石墨烯的加入,提高了纤维与树脂之间的界面性能,I型层间断裂韧度提高了33.3%。ZHANG等[71]制备了一种可以在水中均匀稳定分散的氧化石墨烯改性环氧树脂上浆剂,该上浆剂中的石墨烯分布在碳纤维的表面(图4),与未改性的相比,复合材料的IFSS提高了36.3%,ILSS性能提高了12.7%。

    LIU等[72]通过自组装工艺用石墨烯凝胶修饰碳纤维,修饰后石墨烯增强了纤维树脂界面,IFSS提高了83.2%。ALUKO等[73]通过多尺度模拟分析了石墨烯微片对C/E复合材料的影响,石墨烯微片的含量对复合材料的轴向和横向模量影响都很大,且随着石墨烯微片含量的提高而增加。YAO等[74]制备单丝拔出试验样品,研究氧化石墨烯修饰对碳纤维界面性能的影响,与未修饰的碳纤维相比,其界面剪切强度提高了63.1%。WANG等[75]通过化学反应将石墨烯接枝到碳纤维表面,单丝拔出实验结果表明,与未修饰的碳纤维相比,石墨烯接枝碳纤维的界面剪切强度提高了75.6%。

    图 4
                            氧化石墨烯分散在碳纤维表面

    图 4 氧化石墨烯分散在碳纤维表面

    Fig.4 Graphene oxide surface dispersed on carbon fiber

    由此可见,两种工艺均可提高纤维增强复合材料的力学性能和功能特性。在石墨烯/碳纤维增强复合材料工艺中,石墨烯分散在环氧树脂中,很容易造成树脂体系黏度增加,从而影响复合材料的加工工艺。石墨烯改性C/E复合材料工艺可以避免该问题,但是需要与碳纤维生产厂家紧密合作,在碳纤维制备过程中完成石墨烯改性碳纤维工艺,避免后续处理造成碳纤维性能损伤。

  • 4 结语

    4

    石墨烯改性环氧树脂复合材料具有优异的力学、电学、热学以及尺寸稳定性。通过优化制备工艺,将石墨烯作为功能增强材料应用于传统的复合材料中,赋予C/E以多功能特性,在航天领域有着广泛的应用前景。

    目前,石墨烯/碳纤维复合材料在基础研究方面已取得一定进展,预计未来的研究重点发展方向为:

    (1)高质量功能型石墨烯的规模化制备;

    (2)石墨烯/碳纤维复合材料工艺性研究及工程化验证;

    (3)石墨烯功能复合材料在航天器结构领域的应用。

  • 参考文献

    • 1

      马宏林.航空航天用树脂基复合材料[J].宇航材料工艺,1996(2):36-39.

    • 2

      陈烈民.碳纤维复合材料在卫星上的应用趋势[J].宇航材料工艺,1993,23(4):5-7.

    • 3

      郭玉明,冯志海,王金明.高性能 PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7.

    • 4

      THOSTENSON ET,REN Z,CHOUhou T-W. Advances in the science and technology of carbon nanotubes and their composites:a review[J].Composites Science and Technology,2001,61(13):1899-1912.

    • 5

      ALLEN M J,TUNG V C, KANER R B.Honeycomb carbon:a review of graphene[J].Chemical Reviews,2010,110(1):132-145.

    • 6

      LEE C,WEI XD, KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.

    • 7

      BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008,8(3):902-907.

    • 8

      KELLY B T.The thermal expansion coefficient of graphite parallel to the basal planes[J].Carbon,1972,10(4):429-433.

    • 9

      STOLLER M D,PARK S,ZHU Y,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.

    • 10

      KIM H,ABDALA A A,MACOSKO C W.Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530.

    • 11

      JUN Y S,UM J G,JIANG G,et al.Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties[J].Composites Part B:Engineering,2018,133:218-225.

    • 12

      ZHOU D,CUI Y,XIAO P W,et al.A general and scalable synthesis approach to porous graphene[J].Nature communications,2014(5):4716.

    • 13

      XU K,FU Y,ZHOU Y,et al.Cationic nitrogen-doped helical nanographenes[J].Angew Chem.Int.Ed.Engl.,2017,56(50):15876-15881.

    • 14

      CAI J,RUFFIEUX P,JAAFAR R,et al.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,466(7305):470-473.

    • 15

      RUFFIEUX P,WANG S,YANG B,et al.On-surface synthesis of graphene nanoribbons with zigzag edge topology[J].Nature,2016,531(7595):489-492.

    • 16

      XU Y,LIU Z,ZHANG X,et al.A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property[J].Advanced Materials,2009,21(12):1275-1279.

    • 17

      WU Q,SUN Y,BAI H,et al.High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties[J].Phys.Chem.Chem. Phys.,2011,13(23):11193-11198.

    • 18

      ZHANG X,FENG Y,TANG S,et al.Preparation of a graphene oxide-phthalocyanine hybrid through strong π-π interactions[J].Carbon,2010,48(1):211-216.

    • 19

      BAI H,XU Y,ZHAO L,et al.Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J].Chem. Commun.(Camb.),2009(13):1667-1669.

    • 20

      YANG X,ZHANG X,LIU Z,et al.High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J].The Journal of Physical Chemistry C,2008,112(45):17554-17558.

    • 21

      PATIL A J,VICKERY J L,SCOTT T B,et al.Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J].Advanced Materials,2009,21(31):3159-3164.

    • 22

      VALLéS C,DRUMMOND C,SAADAOUI H,et al.Solutions of negatively charged graphene sheets and ribbons[J].Journal of the American Chemical Society,2008,130(47):15802-15804.

    • 23

      CHANG H,WANG G,YANG A,et al.A Transparent,flexible,low-temperature,and solution-processible graphene composite electrode[J].Adv.Funct.Mater.,2010,20(17):2893-2902.

    • 24

      XU Z,LIU Y,ZHAO X,et al.Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J].Advanced Materials,2016,28(30):6449-6456.

    • 25

      LI Z,XU Z,LIU Y,et al. Multifunctional non-woven fabrics of interfused graphene fibres[J].Nature Communications,2016(7):13684.

    • 26

      XU Z,GAO C.Graphene chiral liquid crystals and macroscopic assembled fibres[J].Nature Communications,2011(2):571.

    • 27

      XIN G,YAO T,SUN H, et al.Highly thermally conductive and mechanically strong graphene fibers[J].Science,2015,349(6252):1083.

    • 28

      SHAO Y,WANG J,WU H, et al.Graphene based electrochemical sensors and biosensors:a review[J].Electroanalysis,2010,22(10):1027-1036.

    • 29

      KWAK J,CHU J H, CHOI J K,et al. Near room-temperature synthesis of transfer-free graphene films[J].Nature Communications,2012(3):645.

    • 30

      CHEN J,GUO Y,WEN Y,et al.Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J].Advanced Materials,2013,25(7):992-997.

    • 31

      WANG G,ZHANG M,ZHU Y,et al.Direct growth of graphene film on germanium substrate[J].Sci. Rep.,2013(3):2465.

    • 32

      NGUYEN S T,NGUYEN T,RINALDI A,et al. Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:352-358.

    • 33

      DAI G P,WU M H,TAYLOR D K,et al.Hybrid 3D graphene and aligned carbon nanofiber array architectures[J].Rsc. Adv.,2012,2(24):8965-8966.

    • 34

      SHI H,LI Y,GUO T.In situpreparation of transparent polyimide nanocomposite with a small load of graphene oxide[J].J Appl. Polym.Sci.,2013,128(5):3163-3169.

    • 35

      WANG X,HU Y,SONG L,et al.In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J].Journal of Materials Chemistry,2011,21(12):4222-4227.

    • 36

      Qin W Z,Vautard F,Drzal L T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B-Engineering,2015,69:335-341.

    • 37

      KIM H,MACOSKO C W.Processing-property relationships of polycarbonate/graphene composites[J].Polymer,2009,50(15):3797-3809.

    • 38

      WAN Y J,TANG L C,YAN D, et al.Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J].Composites Science and Technology,2013,82:60-68.

    • 39

      WANG X,XING W,ZHANG P,et al.Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J].Composites Science and Technology,2012,72(6):737-743.

    • 40

      RAFIEE M A,Rafiee J,WANG Z, et al.Enhanced mechanical properties of nanocomposites at low graphene content[J].Acs. Nano.,2009,3(12):3884-3890.

    • 41

      SHADLOU S,AHMADI M B,TAHERI F.The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites[J].Materials & Design,2014,59:439-447.

    • 42

      BOSE S,DAS A,BASU S,et al.Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite[J].Polym Composite,2018,39(9):3119-3128.

    • 43

      CHHETRIS,SAMANTA P,MURMU C,et al.Effect of dodecyal amine functionalized graphene on the mechanical and thermal properties of epoxy-based composites[J].Polymer Engineering & Science,2016,56(11):1221-1228.

    • 44

      WANG X,JIN J,SONG M.An investigation of the mechanism of graphene toughening epoxy[J].Carbon,2013,65:324-333.

    • 45

      CHANDRASEKARAN S,SATO N,TöLLE F,et al. Fracture toughness and failure mechanism of graphene based epoxy composites[J].Composites Science and Technology,2014,97:90-99.

    • 46

      BORTZ D R,HERASeras E G,MARTIN G I.Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites[J].Macromolecules,2011,45(1):238-245.

    • 47

      CHHETRI S,ADAK N C,SAMANTA P,et al. Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites[J].J Appl. Polym. Sci.,2018,135(15):46114-46124.

    • 48

      YOUSEFI N,LIN X, ZHENG Q, et al.Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites[J].Carbon,2013,59:406-417.

    • 49

      POKHAREL P,TRUONG Q T,LEE D S.Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites[J]. Composites Part B:Engineering,2014,64:187-193.

    • 50

      TENG C C,MA C M,LU C H,et al.Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J].Carbon,2011,49(15):5107-5116.

    • 51

      FUu Y X,HE Z X,MO D C,et al.Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives[J].International Journal of Thermal Sciences,2014,86:276-283.

    • 52

      HUANG X,ZHI C,JIANG P.Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J].The Journal of Physical Chemistry C,2012,116(44):23812-23820.

    • 53

      SHAHIL M,BALANDIN A A.Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J].Nano. Lett.,2012,12(2):861-877.

    • 54

      HOU Z L,SONG W L,WANG P,et al.Flexible graphene-graphene composites of superior thermal and electrical transport properties[J].ACS Appl.Mater.Interfaces,2014,6(17):15026-15032.

    • 55

      ZHANG C,LI T,SONG H,et al.Improving the thermal conductivity and mechanical property of epoxy composites by introducing polyhedral oligomeric silsesquioxane-grafted graphene oxide[J].Polym.Composite,2018,39(S3):E1890-E1899.

    • 56

      WANG S,TAMBRAPARNI M,QIU J,et al.Thermal expansion of graphene composites[J].Macromolecules,2009,42(14):5251-5255.

    • 57

      JIA J,SUN X,LIN X, et al.Exceptional Electrical conductivity and fracture resistance of 3D Interconnected graphene foam/epoxy composites[J].Acs. Nano.,2014,8(6):5774-5783.

    • 58

      SHEN M Y,CHANG T Y,HSIEH T H,et al.Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites[J].Journal of Nanomaterials,Article ID 565401,9 pages,2013.https://doi.org/10.1155/2013/565401.

    • 59

      MANNOV E,SCHMUTZLER H,CHANDRASEKARAN,et al. Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide[J].Composites Science and Technology,2013,87:36-41.

    • 60

      YANG X,WANG Z,XU M,et al.Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet[J].Materials & Design,2013,44:74-80.

    • 61

      HAWKINS D A,HAQUE A.Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites[J].Procedia Engineering,2014,90:176-181.

    • 62

      YAVARI F,RAFIEE M A,RAFIEEet al.Dramatic increase in fatigue life in hierarchical graphene composites[J].ACS Appl. Mater. Interfaces,2010,2(10):2738-2743.

    • 63

      LIU L,XIAO L,ZHANG X,et al.Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene[J].Rsc.Adv.,2015,5(71):57853-57859.

    • 64

      RAMOS F G,MUNOZ M,GARCíAQ J C,et al.Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites[J].Polym. Composite,2017,39(S4):E2116-E2124.

    • 65

      ADAK N C,CHHETRI S,KUILA T,et al.Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J].Composites Part B:Engineering,2018,149:22-30.

    • 66

      QIN W,VAUTARD F,DRZAL L T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B:Engineering,2015,69:335-341.

    • 67

      CHEN J,ZHAO D,JIN X, et al.Modifying glass fibers with graphene oxide:towards high-performance polymer composites[J].Composites Science and Technology,2014,97:41-45.

    • 68

      HUSSAIN S,YORUCU C,AHMED I,et al.Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites[J].Surface and Coatings Technology,2014,258:458-466.

    • 69

      JEONG Y G,BAIK D H,JANG J W,et al. Preparation, structure and properties of poly(p-phenylene benzobisoxazole) composite fibers reinforced with graphene[J].Macromolecular Research,2014,22(3):279-286.

    • 70

      GHIDIUM M,LUKATSKAYA M R,ZHAO M Q,et al.Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J].Nature,2014,516(7529):78-81.

    • 71

      一种石墨烯改性的碳纤维上浆剂的制备方法及其产品.CN105862428A.

    • 72

      LIU L,YAN F,LI M,et al.Self-assembly of graphene aerogel on carbon fiber for improvement of interfacial properties with epoxy resin[J].Mater. Lett.,2018,218:44-46.

    • 73

      ALUKO O,GOWTHAM S,ODEGARD G M. Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite[J].Composites Part B:Engineering,2017,131:82-90.

    • 74

      YAO X,GAO X,JIANG J,et al.Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J].Composites Part B:Engineering,2018,132:170-177.

    • 75

      WANG C,LI J,YU J,et al.Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J].Composites Part A:Applied Science and Manufacturing,2017,101:511-520.

白刚

机 构:北京空间飞行器总体设计部,北京 100094

Affiliation:Beijing Institute of Spacecraft System Engineering,Beijing 100094

角 色:第一作者

Role:First author

邮 箱:gb_501@126.com

第一作者简介:白刚,1980年出生,硕士,工程师,主要从事航天器结构设计工作。E-mail:gb_501@126.com

肖伟

机 构:北京空间飞行器总体设计部,北京 100094

Affiliation:Beijing Institute of Spacecraft System Engineering,Beijing 100094

高锋

机 构:国家纳米科学中心,北京 100190

Affiliation:National Center for Nanoscience and Technology,Beijing 100190

张剑

机 构:中国运载火箭技术研究院,北京 100076

Affiliation:China Academy of Launch Vehicle Technology,Beijing 100076

罗文波

机 构:北京空间飞行器总体设计部,北京 100094

Affiliation:Beijing Institute of Spacecraft System Engineering,Beijing 100094

html/yhclgyen/184461/media/650c6337-21c2-4d38-8442-f2598287c999-image001.png
html/yhclgyen/184461/alternativeImage/650c6337-21c2-4d38-8442-f2598287c999-F002.jpg
html/yhclgyen/184461/alternativeImage/650c6337-21c2-4d38-8442-f2598287c999-F003.jpg
html/yhclgyen/184461/media/650c6337-21c2-4d38-8442-f2598287c999-image004.png

图1 多孔石墨烯SEM图片

Fig.1 SEM images of the pGRF samples

图 2 共价修饰的TPP-NHCO-SPF石墨烯

Fig.2 Schematic representation of part of TPP-NHCO-SPF Graphene

图3 氧化石墨烯及石墨烯纤维

Fig.3 GO fibres and graphene fibres

图 4 氧化石墨烯分散在碳纤维表面

Fig.4 Graphene oxide surface dispersed on carbon fiber

image /

(a) 侧视图 (b) 俯视图

无注解

无注解

无注解

  • 参考文献

    • 1

      马宏林.航空航天用树脂基复合材料[J].宇航材料工艺,1996(2):36-39.

    • 2

      陈烈民.碳纤维复合材料在卫星上的应用趋势[J].宇航材料工艺,1993,23(4):5-7.

    • 3

      郭玉明,冯志海,王金明.高性能 PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7.

    • 4

      THOSTENSON ET,REN Z,CHOUhou T-W. Advances in the science and technology of carbon nanotubes and their composites:a review[J].Composites Science and Technology,2001,61(13):1899-1912.

    • 5

      ALLEN M J,TUNG V C, KANER R B.Honeycomb carbon:a review of graphene[J].Chemical Reviews,2010,110(1):132-145.

    • 6

      LEE C,WEI XD, KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.

    • 7

      BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008,8(3):902-907.

    • 8

      KELLY B T.The thermal expansion coefficient of graphite parallel to the basal planes[J].Carbon,1972,10(4):429-433.

    • 9

      STOLLER M D,PARK S,ZHU Y,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.

    • 10

      KIM H,ABDALA A A,MACOSKO C W.Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530.

    • 11

      JUN Y S,UM J G,JIANG G,et al.Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties[J].Composites Part B:Engineering,2018,133:218-225.

    • 12

      ZHOU D,CUI Y,XIAO P W,et al.A general and scalable synthesis approach to porous graphene[J].Nature communications,2014(5):4716.

    • 13

      XU K,FU Y,ZHOU Y,et al.Cationic nitrogen-doped helical nanographenes[J].Angew Chem.Int.Ed.Engl.,2017,56(50):15876-15881.

    • 14

      CAI J,RUFFIEUX P,JAAFAR R,et al.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,466(7305):470-473.

    • 15

      RUFFIEUX P,WANG S,YANG B,et al.On-surface synthesis of graphene nanoribbons with zigzag edge topology[J].Nature,2016,531(7595):489-492.

    • 16

      XU Y,LIU Z,ZHANG X,et al.A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property[J].Advanced Materials,2009,21(12):1275-1279.

    • 17

      WU Q,SUN Y,BAI H,et al.High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties[J].Phys.Chem.Chem. Phys.,2011,13(23):11193-11198.

    • 18

      ZHANG X,FENG Y,TANG S,et al.Preparation of a graphene oxide-phthalocyanine hybrid through strong π-π interactions[J].Carbon,2010,48(1):211-216.

    • 19

      BAI H,XU Y,ZHAO L,et al.Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J].Chem. Commun.(Camb.),2009(13):1667-1669.

    • 20

      YANG X,ZHANG X,LIU Z,et al.High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J].The Journal of Physical Chemistry C,2008,112(45):17554-17558.

    • 21

      PATIL A J,VICKERY J L,SCOTT T B,et al.Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J].Advanced Materials,2009,21(31):3159-3164.

    • 22

      VALLéS C,DRUMMOND C,SAADAOUI H,et al.Solutions of negatively charged graphene sheets and ribbons[J].Journal of the American Chemical Society,2008,130(47):15802-15804.

    • 23

      CHANG H,WANG G,YANG A,et al.A Transparent,flexible,low-temperature,and solution-processible graphene composite electrode[J].Adv.Funct.Mater.,2010,20(17):2893-2902.

    • 24

      XU Z,LIU Y,ZHAO X,et al.Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering[J].Advanced Materials,2016,28(30):6449-6456.

    • 25

      LI Z,XU Z,LIU Y,et al. Multifunctional non-woven fabrics of interfused graphene fibres[J].Nature Communications,2016(7):13684.

    • 26

      XU Z,GAO C.Graphene chiral liquid crystals and macroscopic assembled fibres[J].Nature Communications,2011(2):571.

    • 27

      XIN G,YAO T,SUN H, et al.Highly thermally conductive and mechanically strong graphene fibers[J].Science,2015,349(6252):1083.

    • 28

      SHAO Y,WANG J,WU H, et al.Graphene based electrochemical sensors and biosensors:a review[J].Electroanalysis,2010,22(10):1027-1036.

    • 29

      KWAK J,CHU J H, CHOI J K,et al. Near room-temperature synthesis of transfer-free graphene films[J].Nature Communications,2012(3):645.

    • 30

      CHEN J,GUO Y,WEN Y,et al.Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J].Advanced Materials,2013,25(7):992-997.

    • 31

      WANG G,ZHANG M,ZHU Y,et al.Direct growth of graphene film on germanium substrate[J].Sci. Rep.,2013(3):2465.

    • 32

      NGUYEN S T,NGUYEN T,RINALDI A,et al. Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:352-358.

    • 33

      DAI G P,WU M H,TAYLOR D K,et al.Hybrid 3D graphene and aligned carbon nanofiber array architectures[J].Rsc. Adv.,2012,2(24):8965-8966.

    • 34

      SHI H,LI Y,GUO T.In situpreparation of transparent polyimide nanocomposite with a small load of graphene oxide[J].J Appl. Polym.Sci.,2013,128(5):3163-3169.

    • 35

      WANG X,HU Y,SONG L,et al.In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J].Journal of Materials Chemistry,2011,21(12):4222-4227.

    • 36

      Qin W Z,Vautard F,Drzal L T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B-Engineering,2015,69:335-341.

    • 37

      KIM H,MACOSKO C W.Processing-property relationships of polycarbonate/graphene composites[J].Polymer,2009,50(15):3797-3809.

    • 38

      WAN Y J,TANG L C,YAN D, et al.Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J].Composites Science and Technology,2013,82:60-68.

    • 39

      WANG X,XING W,ZHANG P,et al.Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J].Composites Science and Technology,2012,72(6):737-743.

    • 40

      RAFIEE M A,Rafiee J,WANG Z, et al.Enhanced mechanical properties of nanocomposites at low graphene content[J].Acs. Nano.,2009,3(12):3884-3890.

    • 41

      SHADLOU S,AHMADI M B,TAHERI F.The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites[J].Materials & Design,2014,59:439-447.

    • 42

      BOSE S,DAS A,BASU S,et al.Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite[J].Polym Composite,2018,39(9):3119-3128.

    • 43

      CHHETRIS,SAMANTA P,MURMU C,et al.Effect of dodecyal amine functionalized graphene on the mechanical and thermal properties of epoxy-based composites[J].Polymer Engineering & Science,2016,56(11):1221-1228.

    • 44

      WANG X,JIN J,SONG M.An investigation of the mechanism of graphene toughening epoxy[J].Carbon,2013,65:324-333.

    • 45

      CHANDRASEKARAN S,SATO N,TöLLE F,et al. Fracture toughness and failure mechanism of graphene based epoxy composites[J].Composites Science and Technology,2014,97:90-99.

    • 46

      BORTZ D R,HERASeras E G,MARTIN G I.Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites[J].Macromolecules,2011,45(1):238-245.

    • 47

      CHHETRI S,ADAK N C,SAMANTA P,et al. Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites[J].J Appl. Polym. Sci.,2018,135(15):46114-46124.

    • 48

      YOUSEFI N,LIN X, ZHENG Q, et al.Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites[J].Carbon,2013,59:406-417.

    • 49

      POKHAREL P,TRUONG Q T,LEE D S.Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites[J]. Composites Part B:Engineering,2014,64:187-193.

    • 50

      TENG C C,MA C M,LU C H,et al.Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J].Carbon,2011,49(15):5107-5116.

    • 51

      FUu Y X,HE Z X,MO D C,et al.Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives[J].International Journal of Thermal Sciences,2014,86:276-283.

    • 52

      HUANG X,ZHI C,JIANG P.Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites[J].The Journal of Physical Chemistry C,2012,116(44):23812-23820.

    • 53

      SHAHIL M,BALANDIN A A.Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J].Nano. Lett.,2012,12(2):861-877.

    • 54

      HOU Z L,SONG W L,WANG P,et al.Flexible graphene-graphene composites of superior thermal and electrical transport properties[J].ACS Appl.Mater.Interfaces,2014,6(17):15026-15032.

    • 55

      ZHANG C,LI T,SONG H,et al.Improving the thermal conductivity and mechanical property of epoxy composites by introducing polyhedral oligomeric silsesquioxane-grafted graphene oxide[J].Polym.Composite,2018,39(S3):E1890-E1899.

    • 56

      WANG S,TAMBRAPARNI M,QIU J,et al.Thermal expansion of graphene composites[J].Macromolecules,2009,42(14):5251-5255.

    • 57

      JIA J,SUN X,LIN X, et al.Exceptional Electrical conductivity and fracture resistance of 3D Interconnected graphene foam/epoxy composites[J].Acs. Nano.,2014,8(6):5774-5783.

    • 58

      SHEN M Y,CHANG T Y,HSIEH T H,et al.Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites[J].Journal of Nanomaterials,Article ID 565401,9 pages,2013.https://doi.org/10.1155/2013/565401.

    • 59

      MANNOV E,SCHMUTZLER H,CHANDRASEKARAN,et al. Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide[J].Composites Science and Technology,2013,87:36-41.

    • 60

      YANG X,WANG Z,XU M,et al.Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: Carbon fiber and graphene nanoplatelet[J].Materials & Design,2013,44:74-80.

    • 61

      HAWKINS D A,HAQUE A.Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites[J].Procedia Engineering,2014,90:176-181.

    • 62

      YAVARI F,RAFIEE M A,RAFIEEet al.Dramatic increase in fatigue life in hierarchical graphene composites[J].ACS Appl. Mater. Interfaces,2010,2(10):2738-2743.

    • 63

      LIU L,XIAO L,ZHANG X,et al.Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene[J].Rsc.Adv.,2015,5(71):57853-57859.

    • 64

      RAMOS F G,MUNOZ M,GARCíAQ J C,et al.Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites[J].Polym. Composite,2017,39(S4):E2116-E2124.

    • 65

      ADAK N C,CHHETRI S,KUILA T,et al.Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite[J].Composites Part B:Engineering,2018,149:22-30.

    • 66

      QIN W,VAUTARD F,DRZAL L T,et al.Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J].Composites Part B:Engineering,2015,69:335-341.

    • 67

      CHEN J,ZHAO D,JIN X, et al.Modifying glass fibers with graphene oxide:towards high-performance polymer composites[J].Composites Science and Technology,2014,97:41-45.

    • 68

      HUSSAIN S,YORUCU C,AHMED I,et al.Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites[J].Surface and Coatings Technology,2014,258:458-466.

    • 69

      JEONG Y G,BAIK D H,JANG J W,et al. Preparation, structure and properties of poly(p-phenylene benzobisoxazole) composite fibers reinforced with graphene[J].Macromolecular Research,2014,22(3):279-286.

    • 70

      GHIDIUM M,LUKATSKAYA M R,ZHAO M Q,et al.Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J].Nature,2014,516(7529):78-81.

    • 71

      一种石墨烯改性的碳纤维上浆剂的制备方法及其产品.CN105862428A.

    • 72

      LIU L,YAN F,LI M,et al.Self-assembly of graphene aerogel on carbon fiber for improvement of interfacial properties with epoxy resin[J].Mater. Lett.,2018,218:44-46.

    • 73

      ALUKO O,GOWTHAM S,ODEGARD G M. Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite[J].Composites Part B:Engineering,2017,131:82-90.

    • 74

      YAO X,GAO X,JIANG J,et al.Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J].Composites Part B:Engineering,2018,132:170-177.

    • 75

      WANG C,LI J,YU J,et al.Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J].Composites Part A:Applied Science and Manufacturing,2017,101:511-520.