Abstract:Cold chain devices with ultra-flexibility and high thermal conductivity had important engineering value and strategic significance in the fields of infrared focal-plane refrigeration for space loads, active and efficient heat transfer, and uniform temperature thermal management. A new graphene film cold chain was proposed, and thermal collaborative design and experimental research were carried out for this prototype. The effects of cold chain length, lap length, size, and the number of end columns on heat transfer of the heat transfer belt were explored. Meanwhile the effects of cold chain length, thickness, and width on its vibration transfer were verified.The results show that solder filling has a significant effect on the improvement of the thermal conductivity of cold chains. Increasing the lap length and the number, the diameter of the end columns can effectively improve the thermal conductivity of the cold chain. Further, the decrease in thickness, the increase in the width and the ratio of width-thickness can increase the response amplitude of the cold chain end. This study is prone to provide a fundamental reference for the design and selection of cold chains with both high flexibility and high thermal conductivity.