Abstract:During the manufacture of variable angle component using automatic fiber placement technology, a complete ply can be obtained by shifting the reference course where cutting operation gives rise to embedded defects in the form of gap and/or overlap emerging in the component. The reference path is designed based on B-spline curve with more generality and design freedom. An algorithm for capturing the accurate location of embedded defects under different fiber-cutting tactics, including the steps of extending the reference path, tow offset, course shifting, tow drop and defect location, is put forward for the open-contoured cylinder component, which is applicable to any coverage parameters. Finally, a Matlab program is developed to verify the effectiveness of the algorithm and visualize the distribution of embedded defects in the component. The result shows that the algorithm can locate the embedded defects for different coverage parameters accurately and provide a theoretical basis for the subsequent fine finite element modeling.