Regional Stacking Sequence Optimization of Composite Propeller Blade Based on Draping Simulation
Author:
Affiliation:

1.National key laboratory of advanced composites, Composites Center of AVIC Manufacturing Technology Institute, Beijing 101300;2.Naval Research Academy, Beijing 100161

Clc Number:

TB332

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to increase structural stiffness of propeller blade,stacking orientation in different regions of the composite propeller blade was optimized respectively. The blade was divided into 4 zones according to its thickness and load condition. Stacking optimization was based on draping simulation results of different zones in the propeller blade,fiber orientation in draping simulation was 0° ,45° ,90° and -45°. Compared with the initial layup scheme of[0/45/0/-45]sn,the optimized blade layup scheme made the main direction of the laminate close to the line connecting the centre points of each section of the blade. The 1st and 3rd natural frequencies of propeller blade were raised by more than 25% ,the 2nd natural frequency was raised by more than 5%. Displacement of propeller blade under uniformly distributed pressure loads was reduced by 50%,and displacement under thermal loads was reduced by 25%.The expected objective of increasing structural stiffness of blade is achieved by layup optimization. The method of optimization by region not only utilizes the designability of composite materials but also improves the optimization efficiency. It is suitable for layup optimization of complex composite structures.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 04,2020
  • Revised:December 28,2021
  • Adopted:October 26,2020
  • Online: February 25,2022
  • Published: February 28,2022