Elastic Modulus of Al/Al2O3 Functionally Gradient Materials Containing Mesoscopic Pores
Author:
Affiliation:

1.Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics,Wuhan University of Technology,Wuhan 430070;2.State Key Lab of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070

Clc Number:

TB34

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The elastic modulus of Al/Al2O3 FGM with mesoscopic pore was studied by using the method of asymptotic homogenization.The feasibility of the asymptotic homogenization method to predict the elastic modulus of Al/Al2O3 FGM with mesoscopic pores was verified by comparison with the experiment.In the case of ignoring the number of pores and other minor factors,the prediction formula of the elastic modulus of Al/Al2O3 FGM with mesoscopic pores was obtained by fitting,which is related to porosity and Al2O3 volume fraction.The results show that the mesoscopic pores can not be ignored in the prediction of the elastic modulus of Al/Al2O3 FGM. Under the same porosity,the number of pores has little influence on the elastic modulus of Al/Al2O3 FGM,while the size and location of pores have great influence on the elastic modulus.The elastic modulus of Al/Al2O3 FGM with random pores is lower than that of Al/Al2O3 FGM with uniform pores under various volume fractions.Porosity also has an obvious influence on the elastic modulus of Al/Al2O3 FGM.With the increase of porosity,the elastic modulus of materials gradually decreases,and the greater the volume fraction of Al2O3,the greater the decrease.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 21,2019
  • Revised:December 24,2019
  • Adopted:January 02,2020
  • Online: June 17,2020
  • Published: