低密度双基体烧蚀防热材料

华小玲 缪长礼 李 翔 潘晓行 陈海坤

(航天材料及工艺研究所,先进功能复合材料技术重点实验室,北京 100076)

文 摘 采用硅基针刺毡作为增强体、先后浸渍无机和有机树脂基体的两次复合工艺,可制成密度<1.20 g/cm³的双基体烧蚀防热材料。通过马弗炉烘烤、石英灯静态隔热、电弧风洞加热三种方式考核材料的剩余强度、抗变形能力、隔热性能和抗冲刷能力。结果表明:该材料在有氧条件下,经马弗炉1100℃、3000 s烘烤,剩余基体还有20wt%,材料仍具有一定强度;石英灯加热至1200℃,总时长1200 s的条件下,25 mm 厚的试样最终背温<120℃;电弧风洞考核显示,材料抗冲刷能力强,880 s时,25 mm 厚材料背温仅有71℃。

关键词 低密度,双基体,烧蚀防热材料

Low Density Bi-Matrix Ablative Composites

Hua Xiaoling Miao Changli Li Xiang Pan Xiaoxing Chen Haikun (Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

Abstract Using the processing technology of impregnating silica-based needle felt with inorganic and organic resin matrix composites successively, bi-matix ablative composites with density less than 1. 20 g/cm³ can be obtained. Residual strength, non-deformability, heat insulation performance and anti-erosion properties of this bi-matrix ablative composites are assessed through three methods, including muffle furnace baking, quartz lamp static heat insulation and arc air tunnel heating. The results show that after muffle furnace baking at 1 100°C for 3 000 s under aerobic conditions, the matrix remains 20% and still has sufficient strength. While quartz lamp heating for 1 200 s with 1 200°C peak temperature, the back temperature of 25 mm thick specimens is lower than 120°C. Arc air tunnel heating results show that the bi-matrix ablative composites have outstanding anti-erosion properties and the back temperature of 25 mm thick spicemens is 71° C merely.

Key words Low density, Bi-matrix composities, Ablative composities

0 引言

烧蚀防热法^[1]的最大优点是安全、可靠,适应流 场变化能力强。烧蚀防热材料广泛应用于航天领域, 目前有树脂基、碳基和陶瓷基三大类。其中,树脂基 材料的成型工艺性好、成本低、适合成型大型构件,在 短时使用具有较好的防隔热效果,但受树脂过分热解 失效的限制,不能胜任长时间防热的要求;碳基防热 材料的烧蚀性能优良,但密度大、隔热性差;陶瓷 基^[2]材料具有耐热性好,结构稳定的优势,但受工艺 限制,不适合制作大型构件,质硬且脆,抗热震性较 差。 以上三类材料分别适用于现有不同型号不同热 环境部位,而未来的高速飞行器将在大气层中长时 间、高速机动飞行,气动加热具有多脉冲、长时间的特 点,对大面积防热层材料提出了轻质、低热导率、抗长 时间有氧强剪气动热环境的要求,可能单一基体的防 热材料不能同时满足以上要求,而既具备树脂基材料 优良烧蚀散热性、低成本、易加工,同时又具备陶瓷基 材料耐长时高温性能的双基体防热材料是一种较好 的选择。

类似双基体概念的材料已在美国的防热材料中得到应用,如美国的PICA(Phenolic Impregnated Carbon

收稿日期:2012-08-28

作者简介:华小玲,1970年出生,高级工程师,主要从事树脂基烧蚀防热材料研究。E-mail:greentea-2008@163.com

Ablator)和 SIRCA (Silicone Impregnated Reusable Ceramic Ablator)材料^[3],前者为酚醛树脂浸渍碳基烧蚀 材料,后者为硅树脂浸渍可重复使用陶瓷烧蚀体材料, 它们分别将树脂基与碳基或陶瓷基相结合,一方面,利 用有机树脂的热解所形成的热阻塞效应,提高材料的 防隔热效果以及树脂的填充韧化作用改善多孔碳基或 陶瓷材料的抗热震能力;另一方面,依靠碳基或陶瓷基 的耐热性以维持长时间防热的要求。然而,PICA 和 SIRCA 材料的制作较为复杂,不能成型大尺寸防热层, 多采用防热瓦拼接的形式,为简化工艺,本文尝试以磷 酸铝^[3]溶液为无机基体浸渍低密度针刺毡,之后加热 先制得高孔隙的半固化无机复合体,再浸渍酚醛树脂 溶液从而制得双基体复合材料。

1 实验

1.1 低密度双基体烧蚀防热材料制备

选用密度为 0.3 g/cm³的硅基针刺毡,按图 1 所 示制备低密度双基体烧蚀防热材料。其中,磷酸铝硬 化反应温度为 200~220℃,半成品的孔隙率在 70% 以上。

图1 低密度双基体烧蚀防热材料制备工艺

Fig. 1 Preparation procedure of low density bi-matrix ablative composites

1.2 长时间耐温性能测试

采用马弗炉作为加热设备,在有氧条件下,控制

在1100℃,对硅基针刺毡增强双基体复合材料烘烤 3000 s。过程中分段记录材料的失重率,并观察最终 的材料表面状态,考核长时间加热条件下,无机树脂 对结构强化的效果。

1.3 静态隔热性能测试

采用石英灯加热的方式,考核厚度为 25 mm 的 双基体复合材试样料静态隔热性能。试验最高热面 温度为1 200℃,保持 100 s,其余时间热面温度维持 在 800℃,总加热时间1 200 s,综合考核材料的本体 隔热和烧蚀散热的效果。

1.4 动态烧蚀性能测试

采用电弧风洞加热试验考核材料的抗冲刷性能和动态隔热性能,试验条件见表1。试样尺寸为150 mm×150 mm×25 mm。

表1 电弧风洞试验条件

Tab. 1 Conditions of arc air tunnel heating experiment

-					
中午	平板冷壁热	气流总焓	弧室压	表面压	试验时
扒恣	流∕kW•m ⁻²	$/MJ \cdot kg^{-1}$	力/MPa	力/kPa	间/s
台阶1	550	6.90	0.64	5.0	70
台阶2	150	2.72	0.26	2.0	730

2 结果与分析

2.1 长时间耐温性能

表2为硅基针刺毡增强双基体复合材料的基本 性能参数。可以看出,双基体复合材料的密度<1.20 g/cm³(高硅氧/酚醛烧蚀防热材料密度为1.65 g/ cm³),属轻质烧蚀防热材料;一般要求烧蚀防热材料 的拉伸强度≥20 MPa,双基体复合材料达到37.1 MPa,其力学性能完全满足机加和使用要求;该材料 的热扩散率仅有1.36×10⁻³ cm²/s,相对于高硅氧/酚 醛材料^[4]和碳/酚醛材料的热扩散率要低很多。

表 2 硅基针刺毡增强双基体复合材料性能

Га	b. 2	2	Properties	of	silica-	based	need	le f	felt	t rein	forced	bi	i-marix	compos	ites
----	------	---	------------	----	---------	-------	------	------	------	--------	--------	----	---------	--------	------

密度/	热导率/	比热容/	线胀系数(RT~	热扩散率	拉伸强度	拉伸模量	断裂伸长	弯曲强度	弯曲模量	压缩强度
$g \boldsymbol{\cdot} cm^{-3}$	$W(m\boldsymbol{\cdot} K)$	$J(g\boldsymbol{\cdot} K)^{1}$	$300^{\circ}C$)/10 ⁻⁶ K ⁻¹	$/10^{-3}{\rm cm}^2\cdot{\rm s}^{-1}$	/MPa	/GPa	率/%	/MPa	/GPa	/MPa
1.19	0.23	1.42	8.12	1.36	37.1	4.87	1.14	52.6	4.91	65.7

图 2 为双基体复合材料在有氧条件下,1 100℃、 3 000 s 后的实物照片。

从图 2 可看出,试样颜色发白,有少量黑色有机 树脂残碳,表面较平整,材料比较致密,从侧面看,没 有变形。由此可见,采用无机树脂预强化工艺对提高 材料高温抗氧化性能及有机树脂受热分解后残余物 质的强度,降低烧蚀后材料的孔隙率,减小材料受热 变形具有明显的作用。表 3 为实验过程中双基体复 合材料的失重率。

 (a) 正面
(b) 侧面
图 2 双基体复合材料经马弗炉烘烤后的试样
Fig. 2 Specimens of bi-matrix composites after muffle furnace baking
宇航材料工艺 http://www.yhclgy.com 2013 年 第 2 期

— 36 —

表 3 双基体复合材料经 1 100℃烘烤后的热失重率

Tab. 3 Thermal weight loss rate of bi-matrix composites after 1 100°C baking

		e	
时间/s	失重率/%	时间/s	失重率/%
300	25.5	1200	41.1
600	32.5	1800	46.9
900	33.7	3000	54.3

从表3看出,双基体复合材料经1100℃/3000 s 加热,失重率达到54.3%。原始材料中,基体材料占 75wt%,以总长3000 s的考核时间,双基体复合材料 剩余的基体还有20wt%,有利于提高纤维的抗氧化 性能和烧蚀防热材料表面的抗剥离强度。

2.2 静态隔热性能

图 3 为石英灯考核的温度—时间曲线。试验开 始阶段,热面温度在 30 s 内快速升至 1 200℃,保持 到 100 s,之后快速降至 800℃,保持到 1 200 s,试验 结束。从试样背温曲线可以看出,试样背温曲线在 100℃附近有一个明显的平台出现,这与磷酸铝组分 的脱水吸热有关,起到了类似于相变发汗降温的作 用,试样的最终背温<120℃。

Fig. 3 Temperature-time curves of quartz lamp heating

2.3 动态烧蚀性能

表4为双基体复合材料电弧风洞加热试验结果。

表 4 双基体复合材料电弧风洞加热试验结果

Tab.4 Arc air tunnel heating results of bi-matrix composites

质量损失率/%	线烧蚀量/μm	800 s 时背温/℃
6.87	80	71

从表4可以看出,由于电弧风洞加热试验中有气 流冲刷,不断带走烧蚀材料表面分解气体,因此无机 树脂类似"相变"发汗降温的作用更加明显,试样的 外形尺寸几乎没有变化,800 s时的背温仅有 71℃。 图 4 为试验前后试样的表面状态。

由图4可以看出,双基体复合材料烧蚀表面无开裂、分层、鼓泡的现象发生,试验后,试样表面颜色较白,纹路细致、材料致密,质地坚硬。

Fig. 4 Specimens of arc air tunnel heating experiment

3 结论

(1)采用密度为 0.3 g/cm³的硅基针刺毡,通过 二次浸渍的方法可以得到密度 <1.20 g/cm³、热扩散 率为 1.36×10⁻³ cm²/s 的低密度双基体烧蚀防热材 料;

(2)该低密度双基体材料经1100℃/3000 s加 热考核,剩余基体还有20wt%,其中的磷酸盐可对增 强结构起到定型强化的作用;

(3)石英灯加热考核峰值温度1200℃,总加热时间1200s的条件下,因磷酸铝组分脱水吸热,25 mm厚的试样背温在100℃附近有一个明显的平台, 最终背温<120℃;

(4)电弧风洞的结果表明,双基体复合材料的抗 冲刷能力强,800 s 时,25 mm 厚材料的背温仅有 71℃。

参考文献

[1] 范真祥,程海峰,等. 热防护材料的研究进展[J]. 材 料导报,2005,19(1):13-15

[2] 邹武,张康助. 陶瓷基复合材料在火箭发动机上的应用[J]. 固体火箭技术,2000,23(2):60

[3] Tran H K, Rasky D J. Thermal Response and Ablation Characteristics of Light-Weight Ceramic Ablators. Thermophysics Conference. AIAA9346532(AIAA 93-2790): AIAA 28th July 6-9,1993/Orlando, FL

[4] 张宗强, 匡松连, 等. 树脂基复合材料长时间烧蚀防 热的应用研究[J]. 宇航材料工艺, 2007, 37(6):30

(编辑 吴坚)