X - cor夹层结构的平拉性能

李 勇 肖 军 原永虎 谭永刚

(南京航空航天大学材料科学与技术学院,南京 210016)

文 摘 研究了 Pin植入角、Pin直径和 Pin材料对 X - cor夹层结构平拉强度及平拉模量的影响。平拉性 能试样采用 Rohacell 31泡沫作为芯材, Pin采用不同直径的 T300/FW - 63和 SC - 240/FW - 63拉挤细杆。结 果表明,X - cor夹层结构平拉强度增强效率随着植入角度的增加先增大、后减小,平拉模量的增强效率则随植 入角的增加而减小;随 Pin直径减小,平拉强度增强效率增加,平拉模量增强效率降低;不同 Pin材料对 X - cor 夹层结构平拉强度增强效率相同,高模量的 Pin对 X - cor夹层结构平拉模量的增强效率更高。

关键词 夹层结构,X-cor,Pin,平拉试验

Flatwise Tensile Properties of X-cor Sandwich Structures

Li Yong Xiao Jun Yuan Yonghu Tan Yonggang (College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016)

Abstract To experimentally study the influence of pin's angle and diameter and pin materials on the strength and modulus of X-cor sandwich structures, the specimens of flatwise tensile test were made of the Rohacell 31 foam core and the pins with different kinds of diameter consisting of T300/FW-63 carbon/epoxy and SC-240/FW-63 glass/ epoxy with pultrusion process The results show that the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures increased first and then decreased as pin's angle increased and increased as pin 's diameter decreased, the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures decreased as pin 's diameter decreased, the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures is keep constant with different pins materials, but the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures is keep constant with different pins materials, but the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures is keep constant with different pins materials, but the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures is keep constant with different pins materials, but the efficiency of pin reinforcing flatwise tensile strength of X-cor sandwich structures is keep constant with different pins materials.

Key words Sandwich structures, X-cor, Pin, Flatwise tensile testing

1 引言

夹层结构具有比强度、比模量高的特点,在航空 航天领域有着广泛应用。空间点阵夹层结构是新一 代轻质超强韧材料,X- cor夹层结构属于空间点阵 夹层结构,它是将碳纤维复合材料针状物 (Pin)以一 定角度植入泡沫中形成的三维桁架芯材结构。该结 构具有以下优点: 夹层结构的复合材料面板直接与 嵌入面板的 Pin共固化,无需胶膜,既简化了工艺,又 提高了强度,降低了结构质量; Pin构成的三维桁 架具有很高的结构效率; 结构有更大的设计自由 度,可实现局部高承载。

X - cor夹层结构与具有相同压缩和剪切强度的

蜂窝夹层结构相比,可减重 $10\% \sim 15\%^{[1]}$ 。目前国 外开展了 X - cor夹层结构三点弯曲、单轴拉伸和拉 弯组合试验,准静态和动态压缩性能,面外力学性能 并与蜂窝夹层结构进行对比^[2~5]。结果表明,蜂窝夹 层结构高于 Z - Pin增强泡沫夹层结构,但 X - cor夹 层结构的剪切、压缩刚度远高于 NOMAX蜂窝夹层结 构。此外文献 [6~11]对 X - cor夹层结构剪切性能 试验方法进行了研究。而国内主要开展了 X - cor夹 层结构三点弯曲、平面压缩和剪切等性能研究^[12~14]。

本文选用碳纤维增强环氧 Pin和玻璃纤维增强 环氧 Pin两类增强体系,研究了 Pin植入角、分布密 度、Pin直径和 Pin材料对 X - cor夹层结构平面拉伸

作者简介:李勇,1970年出生,副教授,主要从事先进复合材料自动化成型工艺、特种夹层结构工艺及性能研究。 E - mail: lyong@nuaa_edu_cn

http://www.yhclgy.com 宇航材料工艺 2010年 第 1期

收稿日期: 2009 - 08 - 12

基金项目:军品配套项目 (JPPT - 1146)

性能的影响。

2 实验

2.1 原材料

X - cor夹层结构采用 Rohacell 31泡沫作为基体 芯材,厚度为 12 mm; Pin为自制的 T300/FW - 63碳 纤维环氧和 SC - 240/FW - 63玻璃纤维环氧拉挤杆, 直径为 0.5和 0.7 mm;面板采用光威公司 12500单 向碳纤维预浸布和 7781玻纤织物预浸布 (单层厚度 0.25 mm)铺叠而成,面板采用 [0/90/0/90],正交铺 层结构。

2.2 试样制备及性能测试

采用自制的 Pin数控植入机制备 X - cor芯材, 铺覆蒙皮后,采用自制的程序控温真空固化装置固 化。为研究不同的 Pin材料、Pin植入角、植入密度和 Pin直径等参数变化对 X - cor夹层结构平拉性能的 影响,设计制备了不同规格的 X - cor平拉试样,同时 制备了一组无 Pin增强的空白泡沫夹层结构进行对 比试验,试样的不同规格列于表 1中。

表 1 X - cor夹层结构平拉性能试验结果

Ta	ıb.1 F	la twise te	nsile testing	g results of	X-cor sa	ndwich
	植入角	Pin直径	植入密度	Pin有效体	平拉强度	平拉模量

D:	但八円	LINEIT	恒八百反	I III H XX III	干亚强反	〒111天里
PIII	/()	/mm	/mm ×mm	积分数 /%	/MPa	/MPa
	0	0. 7	5 ×10	0. 76	1. 13	87.4
	25	0.7	5 ×10	0. 72	1. 53	82.4
玻璃	32	0. 7	5 ×10	0. 79	1.51	82.3
纤维	40	0.7	5 ×10	0. 75	1. 64	78.0
	32	0. 7	10 ×10	0.36	0.87	58. 2
	32	0. 7	5 x 5	1. 30	2. 42	112.6
	25	0.5	5 ×5	0. 66	2. 19	73. 2
	32	0.5	5 x 5	0. 71	1. 90	98.1
碳纤维	25	0.5	5 ×10	0. 33	1. 10	70. 2
	32	0.5	5 ×10	0.36	1. 02	68.0
	40	0.5	10 ×10	0. 18	0.58	54. 5
泡沫	-	-	-	-	0. 88	35. 5

将制备好的 X - cor夹层结构按 GB 1452—87 《非金属夹层结构平拉强度实验方法》切割,尺寸为 60 mm x60 mm。每组试验为 5个试样,平拉试验采 用自行设计的工装夹具上通过互相垂直的两个铰接 装置来实现拉伸过程中的自对正。通过 AB 胶将试 样的蒙皮分别粘接在工装夹具上。平拉试验装置如 图 1所示,通过垂直方向的铰接保证试样平拉过程中 载荷沿轴心方向传递。对于 X - cor试样,在切割过 程中会将试样边缘处 Pin切断,试验结果中 Pin的体 积分数 V_{pin}为试样中完整 Pin (上下两端均与面板结 http://www.yhclgy.com 字航材料工艺 2010年 第 1期

合)的体积分数。

图 1 X - cor平面拉伸试验装置 Fig 1 Experimental device for flatwise tensile test

of X-cor sandwich

3 结果与分析

X - cor夹层结构平拉性能试验结果如表 1所示。

图 2为植入角 25 % - cor夹层结构与泡沫夹层 结构的应力 — 应变曲线。可见其强度和模量较普通 泡沫夹层结构均有较大幅度提高。

图 2 X - cor与泡沫夹层结构平拉应力 — 应变曲线 Fig 2 Stress - strain cure of X-cor and foam sandwich structures

在 X - cor夹层结构平拉过程中,载荷通过蒙皮 分别传递给 Pin以及泡沫,随着载荷的增加,他们各 自承担一定的载荷,当载荷达到最大值发生破坏时, 此时泡沫仍处于弹性阶段,但是 Pin在蒙皮中的脱落 导致载荷的重新分配,未损坏的 Pin受到一个冲击载 荷,致使所有的 Pin同时发生失效,当 Pin失效后所 有载荷均由泡沫承担,此时强度已远超过泡沫的拉伸 强度,所以 Pin破坏的同时,泡沫也跟着破坏,所以 X - cor夹层结构应力—应变曲线也可以看出,当载荷 达到最大值时,应力有一个瞬时下降的波动,然后载 荷突然下降,试样失效。

为了比较不同植入角, Pin对平拉性能的增强效率, 假设植入相同角、相同直径 Pin对 X - cor夹层平

拉强度与模量的贡献是相同的,同时 Pin对 X - cor 夹层平拉强度、模量的贡献与泡沫对 X - cor夹层的 贡献是相互独立的,则 X - cor夹层结构的平拉强度、 平拉模量可分别采用公式(1)、(2)表达。

$$= _{\text{foam}} + V_{\text{Pin}} \quad \text{Pin} \qquad (1)$$

式中, _{6am}为泡沫对 X - cor夹层结构平拉强度的贡 献, _{Pin}为植入角和直径一定时, V_{Pin} (Pin体积分数) 为 1%的 Pin对 X - cor夹层结构平拉强度的贡献。

$$E = E_{\text{foam}} + V_{\text{Pin}} E_{\text{Pin}}$$
(2)

式中, *E*_{foan}为泡沫对 X - cor夹层结构平拉模量的贡 献, *E*_{Pin}为植入角和直径一定时, *V*_{Pin}为 1%的 Pin对 X - cor夹层结构平拉模量的贡献。

根据公式 (1)、(2)计算出不同植入密度的 X - cor的 _{Pin}和 E_{Pin} ,其结果列于表 2中。通过比较可知,在植入角度和 Pin直径相同条件下,随着植入密度的增加,X - cor夹层结构的强度和模量均增加,但 是单位体积分数 Pin对夹层结构的增强效率基本相同。这也验证了 Pin与泡沫增强相互独立的假设是正确的。

表	2	不同植)	\密度下	X - 0	cor的	Pin和	E _{Pin}
Tab. 2	Pin	and E _{Ph}	of X-cor	· w ith	d iffer	ent Pir	ı's den sitv

Pin	植入密度/mm ×mm	Pin /MPa	E _{Pin} /MPa
	10 ×10	1. 62	62.2
玻璃纤维	5 ×10	1. 61	58.8
_	5 x 5	1. 62	58.6
7世 / 7 / 44	5 ×10	2.18	89. 0
倾≥十≤庄	5 ×5	2.32	87.1

Pin植入角度变化对 X - cor夹层结构平拉性能 的影响结果列于表 3中。随着 Pin植入角度的增加, 强度增强效率先增加、后减小,从 0°~25°强度增强 效率增大,从 25°~40°强度增强效率减小;平拉模 量增强效率随植入角增加而减小。

表 3 不同植入角度 X - cor的 _{Ph}和 E_{Ph}

Tah 3 Ph	and E _{Pn} of X-cor	with differen	t Pin's angle
Pin	植入角 /()	Pin /MPa	E _{Pin} /MPa
	0	1. 25	67. 9
1中1肉4千4年	25	1. 87	64. 6
坂 墒纤维	32	1. 61	58.8
	40	1. 57	56.3
	25	2. 77	104. 4
碳纤维	32	2.18	89. 0
	40	2.04	84. 9

随植入角变化,强度的变化规律可以通过 Pin的

受力状态来分析 (图 3),其可以分解成使 Pin沿蒙皮 拉出的轴向力 F₁及垂直于 Pin方向的力 F₂。 F₂使 Pin有发生转动的趋势。随着植入角 的增大,F₂从 0开始增加,当此力未达到使 Pin在蒙皮中转动的临 界值时,试样的破坏模式主要是通过轴向力 F₁将 Pin 从蒙皮中拔出,因此随着植入角的增大,需要的破坏 载荷 F增大;当植入角继续增大,F₂达到其临界值 时,所产生的转矩足以使 Pin在蒙皮中发生转动,破 坏 Pin与蒙皮周围结合的树脂层,使 Pin与蒙皮的连 接失效,Pin在很小的轴向力作用下即可被破坏,导 致试样失效,此时随着植入角的增加,需要的破坏载 荷 F减小。因此随着植入角的增加,所对 X - cor夹 层结构的强度增强效率先增加,达到临界值后随植入 角增加,增强效率降低。

图 3 平拉时 Pin受力分析 Fig 3 Force analysis of Pin in flatwise test

通过比较植入角度为 25°, Pin 直径分别为 0.5 和 0.7 mm的夹层结构平拉性能可见,直径 0.5 mm 的 Pin对夹层结构平拉强度增强效率 (pin = 2 76 MPa)比直径 0.7 mm 的 Pin (_{Pin} = 1.87 MPa)高 47.6%,而直径 0.7 mm的 Pin对夹层结构平拉模量 增强效率 (E_{Pin} = 64.6 MPa)比直径 0.5 mm的 Pin (E_{Pin} = 56.5 MPa)高 14.3%,综合考虑小直径 Pin对 夹层结构平拉性能的增强效率优于大直径。在夹层 结构平拉实验过程中,破坏模式是 Pin尖端与蒙皮之 间的连接发生脱落,因此相同体积分数下,小直径 Pin与蒙皮的结合界面面积大,因此强度的增强效率 高:同样道理,由于大直径的 Pin与蒙皮结合界面面 积小,因此更容易向植入角更小的方向转动,根据上 述分析及图 4可知, X - cor夹层结构的平拉模量增 强效率随植入角度的减小而增大,因此相同体积分数 下大直径的 Pin对 X - cor夹层结构的平拉模量的增

http://www.yhclgy.com 宇航材料工艺 2010年 第 1期

— 88 —

强效率要高。

通过比较 Pin直径 0.5 mm、植入角 25 的两种规 格 Pin (玻纤 /环氧 Pin 增强 X - cor. Pin = 2 76 MPa, Epin = 56.5 MPa;碳纤维/环氧 Pin增强 X - cor. Pin =2.77 MPa, E_{Pin} = 104.4 MPa) 夹层结构可知,相同 直径条件下,不同材料 Pin对夹层结构平拉强度的增 强效率相同,说明夹层结构的平拉强度取决于 Pin与 蒙皮之间的连接强度,与 Pin本身的材料无关,这也 同时验证了上述夹层结构平拉实验失效模式的分析。 不同 Pin材料对夹层结构的平拉模量增强效率差别 较大,采用碳纤维增强的 Pin制备的夹层结构,模量 增强效率显著高于玻璃纤维增强的 Pin。这主要是 由于夹层结构的平拉模量取决于各个组分的模量,在 试样未破坏之前, Pin的模量对夹层结构的模量起主 要增强作用,由于碳纤维制备的 Pin的模量远高于玻 璃纤维制备的 Pin,因此其对夹层结构的平拉模量增 强效率也要高许多。

4 结论

(1) X - cor夹层结构平拉实验破坏模式为 Pin 与蒙皮之间的界面脱落失效, Pin对 X - cor夹层结构 平拉强度、模量的增强效果明显。

(2) Pin对 X - cor夹层结构平拉强度的增强效 率随植入角的增加先增大、后减小; Pin对 X - cor夹 层结构平拉模量的增强效率则随植入角的增加而减 小,在植入角为 0 时平拉模量增强效率最高。

(3)不同直径 Pin对 X - cor夹层结构性能影响 不同。小直径 Pin对夹层结构的平拉强度增强效率 高;大直径 Pin对夹层结构的平拉模量增强效率高。 综合考虑小直径 Pin对夹层结构平拉性能的增强效 果优于大直径。

(4)相同植入参数下,不同 Pin材料对 X - cor夹 层结构平拉强度增强效率相同,对 X - cor夹层结构 平拉模量增强效率不同,高模量的 Pin材料对 X - cor 夹层结构平拉模量的增强效率高。

参考文献

1 Carstensen T, Coumoyer D, Kunkel E et al X-cor advanced sandwich core material In: 33^{rd} international SAM PE technical conference Covia, CA: SAM PE, 2001: $452 \sim 466$

2 O Brien K T, Paris IL. Exploratory investigation of failure mechanisms in transition regions between solid laminates and X-core truss sandwich Composite Structures, 2002; 57: 189 ~ 204

3 Vaidya U K, Palazotto A N, Gummadi L N B. Low velocity impact and compression-after-impact response of Z-pin reinforce core sandwich composites Journal of Engineering Materials and Technology, 2000; 122: 434 ~ 442

4 Denis D Cartie , Norman A Fleck The effect of p in reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels Composites Science and Technology, 2003; $63: 2\ 401 \sim 2\ 409$

5 Marascoa A I, Cartie D D R, Partridage I K et al Mechanical properties balance in novel Z-pinned sandwich panels: out-of-plane properties Composites Part A: Applied Science and Manufacturing, 2006; 37 (2): 295 ~ 302

6 Kalidindi S R, Abusafieh A, El Danaf E Accurate characterisation of machine compliance for simple compression testing Composites Part A: Applied Science and Manufacturing, 1997; 37: 210 ~ 215

7 Hodgkinson J M. Mechanical testing of advanced fibre composites Cambridge: Woodhead Publishing/CRC Press, 2000: 100 ~ 123

8 O 'Connor D J. A comparison of test methods for shear properties of the cores of sandwich construction J. Test Eval , 1989; 17(4): $241 \sim 246$

9 Zenkert D. The handbook of sandwich construction London: UK Engineering Materials Advisory Services Ltd/Chameleon Press Ltd, 1997: 79 ~ 128

10 Grediac M, Dufort L. Experimental evidence of parasitic effects in shear test on sandwich beams Experimental Mechanics, 2002; 42 (2): 186 ~ 193

11 谭永刚,肖军.夹层结构剪切试验方法分析与改进. 复合材料学报,2008;25(3):115~120

12 田旭,肖军,李勇.X-cor夹层结构试制与性能研究. 飞机设计,2004; (1):22~25

13 谭永刚,肖军,李勇等.X-cor夹层结构剪切性能.宇 航材料工艺,2008;38(5):75~77

14 李勇,肖军,谭永刚等.X-cor夹层结构剪切模量实 验与分析研究.南京航空航天大学学报,2008;40(6):831~ 835

(编辑 任涛)