复合材料胶接用发泡胶的工艺验证与固化动力学

乔海涛1 梁滨1 李喜民2 陈舸3 张立国2

(1 中国航发北京航空材料研究院,北京 100095)
(2 中航工业第一飞机设计研究院,西安 710089)
[3 西安飞机工业(集团)有限公司,西安 710089]

文 摘 通过动态差示扫描量热分析(DSC)研究了一种中温固化的发泡胶的固化工艺和固化动力学。 为证实DSC 峰值温度 T_p 与升温速率 β 的自然对数存在线性关系,在DSC 测试中除采用 β 为5、10、15和20 K/min的升温速率组合外,还特意设定升温速率 β 为1、2.718、7.389和20 K/min,则ln β 等于或近似为0、1、2、3 以便于计算,由此可确定固化工艺参数并快速地估算活化能 E_a 。结合其他关于热固化、热分解甚至一些高分 子材料结晶的文献数据,进一步证实了 T_p 与ln β 往往存在线性关系。利用上述线性关系所获得的特性温度参 数 T_1 和 ΔT 值,可以解释活化能的大小并快速求解动力学数据。研究结果建立并证实了区别于Kissinger和 Ozawa方法的另一种简易而且可靠的反应动力学求解方法,并用数学极限的方法进行推导给出了活化能的解 析解。上述简易方法求解热致反应或结晶变化的动力学参数是合理有效的。

关键词 发泡胶,固化工艺,活化能,T_p-lnβ外推法,极限法 中图分类号:TQ323.5 DOI:10.12044/j.issn.1007-2330.2024.04.002

Process Validation and Cure Kinetics of Foam Adhesive for Composite Bonding

QIAO Haitao¹ LIANG Bin¹ LI Ximin² CHEN Ge³ ZHANG Liguo²

(1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095)

(2 AVIC The First Aircraft Institute, Xi'an 710089)

[3 AVIC Xi'an Aircraft Industry (Group) Company Ltd., Xi'an 710089]

Abstract The curing process and cure kinetics of a moderate-temperature-curing adhesive foam had been investigated by dynamic differential scanning calorimetry (DSC) experiments. To confirm a linear relationship between the peak temperatures (T_p) of DSC curves and the natural logarithm of heating rates (β) , in addition to the combination of heating rates β of 5, 10, 15 and 20 K/min in DSC tests, heating rates β of 1, 2, 718, 7, 389 and 20 K/min were designedly set, so that $\ln\beta$ would be equal and approximate to 0, 1, 2 and 3 for easy calculation, thus curing parameters and the apparent activation energy (E_a) could be easily and quickly determined. Empirical linear relationships between T_p with $\ln\beta$ had been sustained by a series of literature data about heating cure, thermal decomposition and crystallization of some polymers. Using the characteristic temperature parameters T_1 and ΔT obtained from the above linear relationship, the magnitude of the activation energy (E_a) could be explained and the kinetic data could be quickly solved. The results have established and proved a simple and reliable kinetic solution other than methods by Kissinger and Ozawa. The simple method for solving the kinetic parameters of thermalinduced reaction or crystallization change is reasonable and effective.

Key words Adhesive foam, Curing process, Apparent activation energy, $T_p - \ln\beta$ extrapolation method, Method of mathematical limit

航空结构胶接经历了早期以铝合金胶接为主向以

0

引言

第一作者简介:乔海涛,1971年出生,硕士,主要从事航空航天用结构胶黏剂的研究工作。E-mail:15611283016@wo.cn

收稿日期:2023-01-31

纤维复合材料为主的转变,发泡胶作为一类特殊胶黏 剂品种承担了高强、轻量化的蜂窝之间、蜂窝与框架之 间不可或缺的连接作用。发泡胶按形态分为片状(膜 状)、粉状或糊状,在固化过程中发生膨胀以填充孔隙 而起到连接作用。21世纪以来,陆续研究了苏联的BKB -3片状发泡胶^[1]和美国的FM490A片状发泡胶^[2]的力 学性能与固化反应特性。2013年研发了一种中温固化 可高温使用的粉状发泡胶[3];2018年报道了国产发泡 胶在大型复合材料制件中的总体应用情况^[4]。采用差 示扫描量热分析(DSC热分析)一方面可以优化确定热 固性材料的固化温度参数;另一方面被众多相关研究 者广泛应用于研究固化动力学。在固化反应动力学的 研究文献中,5、10、15和20 K/min的升温速率(β)组合 被广泛采用[5-24];较少部分文献采用了较高的升温速率 组合,例如5、10、20、40、80 K/min组合^[25]和15、20、30、 40 K/min组合^[26]。较少研究者采用了较低的DSC升温 速率获得研究数据,黄吉甫等[27]采用了0.5、1、2和5 K/min的整体较低的升温速率组合;李婷婷等^[28]研究603 环氧树脂固化动力学,采用了低升温速率为1、1.5、2、 2.5 K/min条件下DSC测试。文献[1]在对俄罗斯BKB -3发泡胶的DSC热分析研究中,采用了1.25、2.5、5、10 和20 K/min共5个依次倍增的升温速率; 文献[2]以2、 4、8和16 K/min 共4个依次倍增的升温速率研究了 FM490A 发泡胶的固化特性; 文献[3] 以1、2、4 K/min 的 升温速率研究了中温固化耐高温SY-P6发泡胶的固化 特性。对于除发泡胶以外的胶黏剂,对SY-H2胶黏剂^[29]、 SY-H1 胶黏剂^[30]以及氰酸酯及改性胶黏剂^[31]的DSC热 分析中包含了最低至0.625 K/min升温速率。

本文采用DSC峰值温度 T_p 对 ln β 进行线性拟合,并 认为升温速率 β 为1 K/min 所对应的峰值温度附近可确 定为固化工艺温度。在DSC测试中除了包含5、10、15 和20 K/min 为较多文献采用的升温速率组合外,特意 选定升温速率 β 为1、2.718、7.389和20 K/min,则 ln β 等 于或约等于0、1、2、3,以便快速地估算活化能,验证 T_p ln β 的直线关系的普遍适用性,并对反应动力学的解析 解以数学极限方法进行合理的理论推导。

1 实验

1.1 材料

SY-P11A为自制的中温固化片状发泡胶,产品标准号为Q/6S2496—2011。

1.2 热分析测试

SY-P11A 发泡胶的热分析采用 TA 公司的 Q10 型 DSC 分析仪, N₂气氛, 升温速率β分别为 1、2.718、 5、7.389、10、15 和 20 K/min。

1.3 试样制备

管剪强度试样采用 2024-T3 铝合金管材, 粗管 - 16 -- 外径2.54 cm,细管外径1.27 cm,两种管的壁厚均为 1.24 mm。制样前采用磷酸阳极化表面处理。

2 结果与讨论

2.1 发泡胶的DSC测试结果及固化工艺验证分析

图 1 为 SY-P11A 发泡胶不同升温速率 β 时的 DSC 曲线,表1列出了 β 分别为1、2.718、5、7.389、 10、15 和 20 K/min 的 DSC 曲线峰值温度 T_p 数据,为了 按 Kissinger^[32-33]和 Ozawa^[34-35]方法进行活化能计算, 给出了 ln β 、1 000/ T_p 和 ln (β/T_p^2)的计算值,将所对应 的峰值温度全部换算为开尔文温度。

Fig. 1 DSC curve of SY-P11A at different heating rates

表1 SY-P11A 发泡胶的 DSC 数据 Tab. 1 DSC data of SY-P11A foaming adhesive

$\beta/(K \cdot \min^{-1})$	lnβ	$T_{\rm p}/^{\circ}{ m C}$	$T_{\rm p}/{ m K}$	$(1 \ 000/T_{\rm p})$ $/10^3 \ {\rm K}^{-1}$	$\ln(\beta/T_p^2)$
1	0	127.48	400.63	2.496	-11.986
2.718	1	140.43	413.58	2.418	-11.050
5	1.609	149.12	422.27	2.368	-10.482
7.389	2	154.41	427.56	2.339	-10.116
10	2.303	159.38	432.53	2.312	-9.837
15	2.708	167.45	440.6	2.270	-9.468
20	2.996	173.22	446.37	2.240	-9.207

表 2 为 SY-P11A 片状、SY-P6 粉状、BKB-3 片状和 FM490A 片状发泡胶的 DSC 测试升温速率为 1 K/min 时的峰值温度和规范规定的固化工艺温度对照情况。虽然 SY-P6 粉状发泡胶的峰值温度 *T*_{p1}比确定的固化工艺温度稍高,但先前的研究表明,即使在 110 ℃固化 2 h 的情况下,仍可获得 0.5 g/cm³的完整 方块空间的填充,也表明其表 2 的(125±5) ℃/3 h 固化工艺也是可靠的。另外三种发泡胶的峰值温度与固化温度相符性良好。在一飞院和西飞公司的试验验证中,采用了 2.0~3.0 K/min 的升温速率,120~ 126 ℃保温 2 h,填充密度 0.55 g/cm³,室温管剪强度

宇航材料工艺 http://www.yhclgy.com 2024年 第4期

12.3 MPa,显著大于指标值(4.14 MPa)。如图2所示,进行了两个批次SY-P11A发泡胶的管剪强度性能测试,虽然存在一定波动性,但各种条件下的管状剪切强度显著大于指标值(4.14 MPa)。将中温固化的SY-P11A发泡胶的数据(图2中褐色数据柱)与175~180℃高温固化的SY-P1B发泡胶的数据(图2 中蓝色数据柱)相比较,SY-P11A发泡胶有50%以上的数据高于SY-P1B发泡胶。

表 2 不同发泡胶的峰值温度和固化工艺温度 Tab. 2 Peak temperature and curing process temperature

of unferent foam adhesive						
发泡胶	峰值温度T _{p1} /℃	固化工艺				
SY-P11A	127.48	(125±5) °C/(3 h)				
SY-P6	136.03	(125±5) °C/(3 h)				
ВКВ-3	125.08	(125±5) °C/(3 h)				
FM 490A	118.71	121 °C/(1 h)				

2.2 固化动力学的不同求解方法对比

根据Kissinger方法以ln(β/T_p^2)对1/ T_p 或者Ozawa 的方法以ln β 对1/ T_p 进行线性拟合求解固化反应的活 化能是众多学者广泛采用的方法。很多研究者还将 DSC曲线一些关键点的特征温度 T^* (如起始温度、峰 值温度和终止温度)对升温速率 β 进行线性拟合,升 温速率 β 外推至0(实际无升温,不合理);在对众多 文献研究中发现以特征温度 T^* 对ln β 进行线性拟合 更为合理,如公式(1)所示。结合以往在胶黏剂固化 动力学研究结果,由选取不同升温速率所获得的相 应的DSC热分析曲线的特征温度 T^* (如起始反应温 度 T_i 、反应起始onset温度 T_{onset} 、峰值温度 T_p),多数情 况可以得到如关系式(1)所示的直线方程:

$$T^* = T_1 + \Delta T \ln \beta \tag{1}$$

式(1)最早于2002年提出^[29],认为通过上述特征 宇航材料工艺 http://www.yhclgy.com 2024年 第4期 温度所获得的 T_p 值即可确定固化工艺温度。近期发现^[36-37],通过由式(1)所确定的 T_1 和 ΔT 值,可以通过式(2)估算固化反应的活化能:

$$E_{\rm a} \approx {\rm R} T_{\rm 1}^{2} / \Delta T \tag{2}$$

或
$$E_a = RT_1^2 / \Delta T$$
 (3)

式中,R为理想气体常数。基于以往研发的SY-P6粉 状发泡胶,对于上述公式进行了理论推导^[38]。

以表1中的全部DSC数据为例,图3中的峰值温 度 T_x 对升温速率 β 显然不能获得一条直线;按公式 (1)的方法则可以获得图4的显著线性关系(相关系 数r为0.99552)。实际图4中的黑色数据线有轻微 弯折,取不同的数据组合可以获得更好的直线关系, 如图 5(a) 所示取升温速率组合(1、2.718、5 和 7.389 K/min)以及图5(b)、(c)的升温速率组合(7.389、10、 15和20 K/min)都获得了更好的线性关系(相关系数 r分别为0.99977和0.99912);对于升温速率组合 (5、10、15和20 K/min),其线性相关性稍差 [图5(c) 的相关系数 r为0.996 68]。图 5 的 T_n -ln β 外推 T_n 值 显著不同,但都接近于表2中SY-P11A发泡胶的工 艺温度范围;按图中所示的线性拟合数据,外推峰值 温度 T₁分别为 400.461 11、389.166 42 和 393.784 78 K, 对应的 ΔT 值为 13.494 37、19.026 12 和17.3285K,按公式(2)所计算的活化能98805、 66 181 和 74 399 J/mol。将升温速率外推至1 K/min, 得到的T₁值(399.03 K)与表1中的实测值(400.63 K)极其接近,结合所获得的 ΔT 值(取值15.09 K)按 公式(2)可以估算活化能,表3列出了简易方法和传 统Kissinger方法、Ozawa方法所计算的活化能(线性 拟合曲线见图6和图7,线性关系良好),所得出的数 据有依次增大的趋势,但数据相当接近,最大偏差 5% 以内。再次采用 Kissinger 方法以 $\ln(\beta/T_{p}^{2})$ 对 $1/T_{p}$ 以及Ozawa的方法以 $ln\beta$ 对 $1/T_n$ 进行线性拟合对图5 中所用到的数据求解固化反应的活化能,并将结果 汇总于表4中。

— 17 —

将 DSC 分析升温速率 β 设定为 1、2.718、7.389 和 20 K/min 的组合,所对应的峰值温度分别用 T_{p1} 、 $T_{p2.718}$ 、 $T_{p7.389}$ 和 T_{p20} 表示。无须绘图进行线性拟合,可以用关系 式(4)~(9)来确定 ΔT 值,虽然数据有一定波动,但关 — 18—

图 6 基于 Kissinger 方法的线性拟合曲线 Fig. 6 Linear fit plot based on Kissinger's method

图 7 基于 Ozawa 方法的线性拟合曲线 Fig. 7 Linear fit curve based on Ozawa's method

表 3 不同方法计算的活化能数据 Tab. 3 E_a calculations by different methods β = 1, 2. 718, 5. 0, 7. 389, 10. 0, 15. 0, 20 K • min⁻¹

$T_{ m p}$ vs ln $meta$	$E_{a}(=T_{1}^{2}/\Delta T)$ /(J·mol ⁻¹)	$E_{\rm a}({ m Kissinger}$ method)/(J·mol ⁻¹)	$E_{a}(Ozawa method) / (J \cdot mol^{-1})$
$T_{\rm p}$ =399.03+15.09 ln β	87 727	90 977	93 195

表4 不同升温速率组合按不同方法计算的活化能数据 Tab.4 E_a calculations by different methods with different

selected he	eating rate	es
-------------	-------------	----

$\beta / (\mathrm{K} \cdot \min^{-1})$	$E_{a}(=T_{1}^{2}/\Delta T)/$ $(\mathbf{J}\cdot\mathbf{mol}^{-1})$	$\begin{array}{c} E_{a}(\text{Kissinger} \\ \text{method})/(\mathbf{J}\boldsymbol{\cdot}\mathbf{mol}^{-1}) \end{array}$	$E_{a}(\text{Ozawa} \text{method})/(\mathbf{J} \cdot \text{mol}^{-1})$
1,2.718,5,7.389	98 805	98 525	100 201
7.389,10,15,20	66 181	75 786	78 975
5,10,15,20	74 399	82 614	85 444

系式(4)~(9)结果的平均值取舍后为15.14 K,接近于 表3中的ΔT值(15.09 K);特别是20 K/min的升温速率 是众多相关文献采用的数据,结合1 K/min的升温速率 所获得的DSC峰值温度数据,按关系式(9)获得ΔT值 为15.25 K,结合实测值T_{p1}为400.63 K,按公式(2)可 宇航材料工艺 http://www.yhclgy.com 2024年 第4期 求得活化能为87.504 kJ/mol,稍低于表3中的计算结果 (87.727 kJ/mol)。因此,通过升温速率较低的1 K/min 和升温速率较高的20 K/min的所对应的DSC峰值温度, 一方面根据公式(1),另一方面根据ln20近似等于3的 特点,根据公式(2)可以快速估算活化能。

$$\Delta T = (T_{p2.718} - T_{p1}) = (413.58 - 400.63) = 12.95 \text{ K}$$
(4)

$$\Delta T = (T_{p7.389} - T_{p1})/2 = 13.47 \text{ K}$$
(5)

$$\Delta T = (T_{p7.389} - T_{p2.718}) = 13.97 \text{ K}$$
(6)

$$\Delta T = (T_{p20} - T_{p2.718})/2 = 16.40 \text{ K}$$
(7)

$$\Delta T = (T_{p20} - T_{p7.389}) = 18.81 \text{ K}$$
 (8)

$$\Delta T = (T_{p20} - T_{p1})/3 = 15.25 \text{ K}$$
(9)

2.3 不同中温固化发泡胶的活化能对比

表5列出了可中温固化的四种发泡胶的在升温速 率为1 K/min时的峰值温度 T_1 和 ΔT 值,其中SY-P11A 发泡胶的 T_1 为DSC实测值,且 ΔT 值由线性关系最好的 图5来确定,其他三种发泡胶为按公式(1)所获得的直 线拟合值;在上述基础之上,按本文新方法、Kissinger和 Ozawa方法的顺序,计算了活化能,也列于表5中。对 于国产SY-P11A和SY-P6发泡胶活化能数据,新方法 的计算值介于 Kissinger 方法和 Ozawa 方法的计算值之 间,也表明新方法的可靠性;而国外的BKB-3和FM490A 片状发泡胶的活化能计算值是依次升高的,可归结于 这两种发泡胶的T,值较低。再结合表3和表4中的活 化能数据,表明不同的升温速率组合显著影响活化能 计算结果。仅当升温速率组合为(1、2.718、5和7.389 K/min)时,三种方法的计算结果最接近,且新方法的计 算值介于Kissinger方法和Ozawa方法的计算值之间;这 也表明研究较低升温速率组合的固化动力学是有重要 价值的,对于探索固化工艺也具有重要意义。其他计 算结果存在不同程度的显著差异,一方面新方法在计 算中只考虑升温速率较低的1 K/min 所对应较低的T, 值,另一个决定因子是 ΔT 值的高低。

表 5 几种可中温固化发泡胶的不同 DSC 特征温度及活化能数据 Tab. 5 *E* calculations by different methods at different characteristic temperature

	a	v		1	
Adhesive foam	T_1/K	$\Delta T/\mathrm{K}$	$E_{\rm a}(=T_1^2/\Delta T)/(\mathbf{J}\cdot\mathbf{mol}^{-1})$	$E_{\rm a}({\rm Kissinger})/({\rm kJ} {ullet mol}^{-1})$	$E_{\rm a}({\rm Ozawa})/({\rm kJ} \cdot {\rm mol}^{-1})$
SY-P11A	400.63	13.49	98 920	98.525	100.201
SY-P6	409.18	19.83	70 197	67.308	70.660
ВКВ-3	398.23	25.78	51 144	55.076	59.359
FM 490A	391.86	15.06	84 771	89.147	91.385

2.4 简易动力学求解方法的拓展应用

2.4.1 高分子结晶动力学的简易求解

韩国学者 KYUNG Hwa Yoon 等^[39]研究了支化聚 丙烯(PP)及其改性体系的结晶动力学,采用了1、5、 10和20 K/min 从较低到较高的降温速率范围,取*T*₁ 为试验测试值 393.15 K,取降温速率为1和20 K/min 两个峰值温度之差再除以3很容易确定 ΔT 为7.2 K, 通过公式(2)计算的活化能数据为 257.014 kJ/mol, 与表中数据按 Kissinger 方法计算的 258.62 kJ/mol 也 是很接近的,相关数据及结果见表6。

表6	不同方法计算的聚丙烯结晶活化能
Tab. 6	E calculations of by different method

$\beta/(K \cdot min^{-1})$	$\ln eta$	$T_{\rm p}$ /°C	$T_{\rm p}$ /K	$\Delta T/{ m K}$	$E_{\rm a}({ m R}T_{\rm 1}^{-2}/\Delta T)/({ m kJ} \cdot { m mol}^{-1})$	$E_{\rm a}({\rm Kissinger})/\left({\rm kJ} {\scriptstyle ullet} { m mol}^{-1} ight)$	
1	0	120	393.15	5	257.014 258.62		
5	1.609	114	387.15			258 (2	
10	2.303	110	383.15			238.02	
20	2.996	105	378.15				

2.4.2 热分解动力学的简易求解

另一个例子是美国 ASTM E 698—05 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method,基于Ozawa方法取得初值,然后再进行迭代, 计算过程较繁琐。

宇航材料工艺 http://www.yhclgy.com 2024年 第4期

对于标准中的材料热分解数据,ASTM E 698—2005 也恰好含有1和20 K/min的DSC测试数据(表7),按ASTM E 698—2005 迭代4次的活化能计算结果极其接近 Kissinger 方法的活化能数据;而用公式(2)的简易方法获得的结果与另两种方法的结果相差在5%以内,计算过程简便快捷甚至无须借助计算机或计算器。

— 19 —

Tab. 7 E_{a} calculations by different methods with data in ASTM E 698							
$\beta/(K \cdot \min^{-1})$	$T_{\rm p}$ / K	$T_{1}/~{ m K}$	ΔT / K	$E_{\rm a}({\rm R}T_1^2/\Delta T)/({\rm kJ}\cdot{\rm mol}^{-1})$	$E_{\rm a}({\rm ASTM})\!/\!({\rm kJ}\!\cdot\!{\rm mol}^{-1})$		
1	404.2	404.2	(478.3-404.2)/3	54.002	57.303(迭代4次)		
20	478.3		=24.7	54.995	57.649(Kissinger法)		

表7 不同方法计算的ASTM E 698中数据的活化能 b.7 *E*_a calculations by different methods with data in ASTM E 69

2.5 理论推导

国际热分析联合会动力学委员会(ICTAC)于 2011年出版的文献[40]中,升温速率β=dT/dt,则基 础的反应动力学可以表示为公式(10):

$$d\alpha/dt = (A/\beta) \exp(-E/RT) f(\alpha)$$
(10)

仍取升温速率 β_1 =1 K/min,在 DSC 分析曲线中获 得峰值温度 T_{p_1} ;如果另一个升温速率 $\beta_2 \rightarrow \beta_1$,或表示 为($\beta_2 - \beta_1$)→0, β_2 对应峰值温度 T_{p_2} 。可以认为上述两 次测试的 DSC 曲线几乎完全重叠,此时可以认为两 个固化过程的 $A_{\lambda}E \pi f(\alpha)$ 是相等的,因此可以得到 下式:

$$\exp(-E/RT_{p1}) = (1/\beta_2)\exp(-E/RT_{p2})$$
(11)
上式取对数可整理为:

$$\ln\beta_2 = E(T_{p_2} - T_{p_1}) / (RT_{p_1}T_{p_2})$$
(12)

由经验公式(1),可知 $T_{p2}=T_{p1}+\Delta T \ln\beta_2$,即 $\ln\beta_2=(T_{p2}-T_{p1})/\Delta T$,代入到式(12)中,简化后得到:

 $E = (RT_{p1}T_{p2})/\Delta T$ (13)
因(T_2 - T_1) \to 0. 所以求极限后:

$$E = RT_{p1}^{2} / \Delta T$$
 (14)
因此公式(2)可以表达为下式:

$$E = RT_1^2 / \Delta T \tag{15}$$

对于β为1 K/min的DSC热分析峰值温度处的反应,由关系式(15)代入公式(10),则基础的反应动力 学方程可以表达为:

$$d\alpha/dt = A \exp(-T_1/\Delta T) f(\alpha)$$
(16)

总之,本文所采用数学中极限的方法研究反应 动力学比文献[40]中总结的微分法、积分法等推导 过程及结果更简便。

3 结论

(1)通过动态 DSC 热分析,通过几组不同升温速 率 β 所获得的 DSC 曲线的特征温度 *T**(如峰值温度 *T*_p),建立了数学上更为合理的 *T**对 ln β 的线性方程, 此关系式有助于确定发泡胶的固化工艺参数。由线 性方程所获得的参数 *T*₁和 ΔT 可用于求解固化反应 的活化能。

(2)利用自然对数的特点,在DSC测试中特意设 定升温速率β为1、2.718、7.389和20 K/min,则lnβ取 值为0、1、2、3等整数值,可更简便快速地确定*T*₁和 Δ*T*值,无须绘图即可通过简易公式推算活化能。除 固化反应外,上述简易方法还可推广应用于结晶动 - 20 - 力学和热分解动力学的研究。

(3)采用极限方法可以推导出活化能*E*_a的解析 解,上述一系列简易方法同以往文献中的微分和积 分方法相对比,是一个重大突破。

参考文献

[1] 乔海涛, 邹贤武, 齐楠. 一种耐高温发泡胶的性能研 究[J]. 粘接, 2003, 24(5): 27-29.

QIAO H T,ZOU X W,QI N. Study of performance of a heat-resistance foam adhesive [J]. Adhesion in China, 2003, 24(5): 27–29.

[2] 乔海涛,邹贤武.FM490A发泡胶的评估[C]//北京粘 接学会第十八届年会暨胶粘剂、密封剂技术发展论坛论文集, 北京:北京粘接学会,2009.

QIAO H T,ZOU X W. Evaluation of FM490A foam adhesive [C]//18th Beijing Adhesion Society Symposium & Proceedings of Adhesives and Sealants Technique development, Beijing: Beijing Adhesion Society, 2009.

[3] QIAO H T, ZOU X W, ZHAO Z J. Develepment of heat-resistant foaming adhesive with moderate cure temperature [C]//'2013 Beijing International Bonding Technology Symposium & 5th Asian Conference on Adhesion Preprints, Beijing:Beijing Adhesion Society, 2003:188–191.

[4] 乔海涛,梁滨,张军营,等.先进复合材料结构胶接体系的研发与应用[J].材料工程,2018,46(12):38-47.

QIAO H T, LIANG B, ZHANG J Y, et al. Development and application of adhesive materials for advanced composite bonding [J]. Journal of Materials Science, 2018, 46(12):38–47.

[5] 卢晓东,黄玉东,张春华.环氧树脂/苯并噁唑二胺体 系的固化动力学及热性能研究[J].固体火箭技术,2008,31 (3);295-298.

LU X D, HUANG Y D, ZHANG C H. Investigation on curing kinetics and thermal properties of the novel epoxy resin system with heterocyclic ring [J]. Journal of Solid Rocket Technology, 2008, 31(3):295–298.

[6]张爱波,刘伟,高开元,等.四嗪处理碳纳米管对环氧 树脂固化动力学的影响[J]. 宇航材料工艺,2008,38(5): 21-24.

ZHANG A B, LIU W, GAO K Y, et al. Effect of tetrazine modified multiwalled carbon nanotube on curing kinetics of epoxy [J]. Aerospace Materials & Technology, 2008, 38(5):21-24.

[7] 刘宏,单国荣,潘鹏举.聚酯树脂粉末涂料的固化行为[J]. 化工学报,2012,63(4):1315-1320.

LIU H, SHAN G R, PAN P J. Curing behavior of powder coating of polyester resin [J]. CIESC Journal, 2012, 63 (4):

宇航材料工艺 http://www.yhclgy.com 2024年 第4期

20

1315-1320.

[8] 李晓靓,柴春鹏,李昌峰,等. 非等温 DSC 法研究甲壳 型液晶 PBPCS 改性环氧树脂的固化动力学[J]. 高分子学报, 2013(9):1190-1196.

LI X L, CHAI C P, LI C F, et al. Non-isothermal cure kinetics of mesogen-jacketed liquid crystal polymer PBPCS modified epoxy reisn [J]. Acta Polymerica Sinica, 2013 (9) : 1190-1196.

[9] 许胜,陈建,何阳,等. 耐高温不饱和聚酯树脂的制备与固化[J]. 石油化工, 2013,42(7):802-806.

XU S, CHEN J, HE Y, et al. Preparation and curing of high temperature resistant unsaturated polyester resin [J]. Petrochemical Technology, 2013,42(7):802-806.

[10] 廖进彬,姜其斌,曾智,等. 苯并嗪改性环氧酸酐体 系的固化机理及动力学[J]. 化工学报,2014,65(3):929-933.

LIAO J B, JIANG Q B, ZENG Z, et al. Curing mechanism and kinetics of epoxy/anhydride system modified by benzoxazine [J]. CIESC Journal, 2014, 65(3):929–933.

[11] 张西莹,刘育红. 酚醛树脂/碳化硼/聚硼氮烷复合物的 固化行为及其热解性能[J]. 化工学报,2014,65(8):3269-3276.

ZHANG X Y, LIU Y H. Curing and pyrolysis behavior of PF/ B4C/PBZ composite [J]. CIESC Journal, 2014, 65(8): 3269–3276.

[12] 唐卿珂,梁国正,易强,等. 促进剂种类对 EP/PN 体系 固化反应动力学的影响[J]. 工程塑料应用,2014,42(8):94-96.

TANG Q K, LIANG G Z, YI Q, et al. Influence of accelerant species on curing reaction kinetics of EP/PN blends [J]. Engineering Plastics Application, 2014, 42(8):94–96.

[13] 覃洁,邓卫星,钟元伟,等. 二甲基硅烷芴基环氧树 脂的合成、表征及非等温固化动力学分析[J]. 有机硅材料, 2014, 28(5): 343-348.

QIN J, DENG W X, ZHONG Y W, et al. Synthesis, characterization & curing kinetics of silicone modified fluorene epoxy resin[J]. Silicone Material, 2014,28(5): 343–348.

[14] 曹伟伟,朱波,朱文滔,等. 基于非等温法的耐高温 环氧树脂体系固化反应动力学研究[J]. 材料工程,2014(8): 67-71.

CAO W W, ZHU B, ZHU W T, et al. Curing reaction kinetics of heat resistant epoxy resin system by non isothermal method resin [J]. Journal of Materials Science, 2014(8): 67–71.

[15] 王权,史铁钧,张焱,等.聚双胍/环氧树脂体系潜伏 性固化过程[J].化工学报,2015,66(1):464-470.

WANG Q, SHI T J, ZHANG Y, et al. Latent curing of polybiguanide/epoxy resin [J]. CIESC Journal, 2015, 66(1): 464-470.

[16] 樊孟金,周宇,尚呈元,等. 一种80 ℃固化环氧树脂 体系的非等温固化动力学[J]. 宇航材料工艺,2017,47(3): 19-24.

FAN M J, ZHOU Y, SHANG C Y, et al. Non-isothermal curing kinetics of an 80 °C curing epoxy resin system [J]. Aerospace Materials & Technology, 2017, 47(3):19-24.

宇航材料工艺 http://www.yhclgy.com 2024年 第4期

[17] JIANG D Y, ZHOU Q, FAN Q, et al. Curing behavior and thermal performance of cyanate ester resin modified by poly (methyl-benzene diethynylbenzene) siliane [J]. Polym. Bull., 2015,72:2201-2214.

[18] ZHANG Y, YUAN L, CHEN F, et al. Cure kinetics of cyanate ester resin using microencapsulated dibutyltin dilaurate as catalyst [J]. Polym. Bull. ,2017,74:1011-1030.

[19] WANG Y C, JIANG X, ZHANG C, et al. Synthesis of epoxide functionalized hyperbranched polyurethane and its blending with benzoxazine: Cure kinetics and thermal properties [J]. Polym. Bull., 2017, 74:4209-4222.

[20] 徐艺,贺强. 非等温 DSC 法研究高温固化胶膜的固 化动力学[J]. 材料导报,2018,32(Sup. 1):529-531,538.

XU Y, HE Q. Curing kinetics of high temperature curing film by non-isothermal DSC method [J]. Materials Reports, 2018,32(Sup. 1):529-531,538.

[21] 秦滢杰,韩建平,陈书华.一种氰酸酯-环氧树脂作为卫星结构件复合材料基体的评价[J]. 复合材料学报, 2018,35(3):528-536.

Qin Y J, HAN T P, CHEN S H, et al. Evaluation of a cyanate ester–epoxy resin as the matrix of composites used for structural components of satellites[J]. CIESC Journal, 2018, 35(3): 528–536.

[22]张成林,董抒华,李丽君,等.E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J].材料工程,2020,48 (9):152-157.

ZHANG C L, DONG S H, LI L J, et al. Curing kinetic and dynamic thermodynamic properties of E-glass fiber/epoxy resin prepreg [J]. Journal of Materials Science, 2020, 48(9): 152–157.

[23] 王建, 雷子萱, 姚家钰, 等. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415.

WANG J, LEI Z X, YAO J Y, et al. Synthesis and curing kinetics of terephthalaldehyde phenolic resin [J]. CIESC Journal, 2022,73(3): 1403-1415.

[24] 赵珩,徐双双,李杰,等.一种三臂聚醚胺固化环氧 树脂的反应动力学[J]. 宇航材料工艺,2023,53(1):56-63.

ZHAO H, XU S S, LI J et al. The kinetics analysis of triamine terminated polyether curing epoxy resin [J]. Aerospace Materials & Technology, 2023, 53(1):56-63.

[25] CRANE L W, DYNES P J, KAELBLE D H. Analysis of curing kinetics in polymer composites [J]. Journal Polymer Science:Polymer Letter Editor, 1973, 11: 533–540.

[26] WANG C S, LEU T S. Thermally initiated cure kinetic of bismaleimides containing poly (dimethylsiloxane) [J]. Polymer, 1999, 40(19): 5407–5413

[27] 黄吉甫,王德润,张保龙,等. 样条函数逼近法研究 环氧树脂固化动力学[J]. 高等学校化学学报,1984,5(3): 421-426.

HUANG J F, WANG D R, ZHANG B L, et al. A study of the curing kinetics of epoxy resins by spline simulation function [J]. Chemical Journal of Chinese Universities, 1984, 5(3):421–426.

[28] 李婷婷,李艳霞,陈超,等. 603 环氧树脂体系固化动力学模型的建立与验证[J]. 复合材料学报,2018,35(1):95-102.

LI T T, LI Y X, CHEN C, et al. Establishment and verification of curing kinetics model of 603 epoxy resin system[J] Acta Materiae Compositae Sinica, 2018, 35(1): 95–102.

[29] 乔海涛, 邹贤武, 赖士洪. 固化温度对 SY-H2 胶黏 剂性能的影响[J]. 航空材料学报, 2002, 22(1): 46-50.

QIAO H T, ZOU X W, LAI S H. Influence of cure temperature on performance of SY-H2 adhesive[J]. Journal of Aeronautical Materials, 2002, 22(1):46-50.

[30] 乔海涛, 邹贤武. SY-H1 糊状胶粘剂性能研究[J]. 航空材料学报, 2002, 22(4): 40-45.

QIAO H T, ZOU X W. Study on properties of SY-H1 paste adhesive[J]. Journal of Aeronautical Materials, 2002, 22(4):40-45.

[31] 乔海涛,包建文,钟翔屿,等. 氰酸酯树脂的改性与 固化特性的热分析[J]. 航空材料学报,2019,39(6):63-72.

QIAO H T, BAO J W, ZHONG X Y, et al. Modification and thermal analysis for curing properties of cyanate–ester resin [J]. Journal of Aeronautical Materials, 2019, 39(6):63–72.

[32] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702–1706.

[33] BLAINE R L, KISSINGER H E. Homer Kissinger and the Kissinger equation [J]. Thermochimica Acta, 2012, 540: 1–6.

[34] OZAWA T. A new method of analyzing thermogravimetric

data[J]. Bull. Chem. Soc. Jpn., 1965(2): 1881-1886.

[35] OZAWA T. Kinetic analysis of derivative curves in thermal analysis[J]. J Therm Anal, 1970(2) :301–324.

[36] 乔海涛. 胶黏剂及复合材料树脂固化活化能的简易 求解[J]. 纤维复合材料,2020,37(4):39-42.

QIAO H T. A simple solution to determine the cure activation energy of adhesives and composite resins [J]. Fiber Composites, 2020, 37(4):39-42.

[37] QIAO H T, WANG Z Y, SONG J P. Kinetic laws of heating initiated reactions for materials in aerospace applications [J]. Aerospace China, 2021, 22(3):54–61.

[38] 乔海涛. 粉状发泡胶固化工艺和动力学研究[J]. 纤 维复合材料,2021,38(2):29-33,55.

QIAO H T. Research on curing process and cure kinetic for a powder adhesive foam [J]. Fiber Composites, 2021, 38(2): 29–33,55.

[39] KYUNG H Y, DONG Y S, YOUN C K. Study on the non-isothermal crystallization kinetics of branched polypropylene [J]. Polymer(Korea), 36(2):245-250.

[40] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data [J]. Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems, 2011, 520(1/2); 1–19.