非连续增强金属基复合材料的变形行为

胡 明 费维栋 姚忠凯 王德尊

(哈尔滨工业大学材料科学与工程学院 哈尔滨 150001)

文 摘 详细介绍了非连续增强金属基复合材料的弹性变形、微塑性变形、宏观塑性变形行为的研究现状,论述了复合材料变形行为的影响因素,并指出了进一步研究存在的主要问题。

关键词 金属基复合材料,变形,位错,残余应力

Deformation Behavior of Discontinuous Reinforced Metal Matrix Composite

Hu Ming Fei Weidong Yao Zhongkai Wang Dezun

(School of Materials Science and Engineering, Harbin Institute of Technology Harbin 150001)

Abstract Development of researches on the deformation behavior and mechanism of discontinuous reinforced metal matrix composite was presented ,including elastic deformation , micro-plastic deformation ,macro-plastic deformation. Influence factors on the deformation behaviors of the composites were also discussed , and further studies in the field is propected.

Key words Metal matrix composite ,Deformation ,Dislocation , Residual stress

1 前言

非连续增强金属基复合材料(Discontinuous Reinforced Metal Matrix Composites, DRMMCs)由于具有 高的比刚度、比强度、比模量、良好的耐高温性能,并 具有较强的性能可设计性而受到关注。在航空航天 工业、汽车工业、体育产业等领域具有广泛的应用前 景^[1~3]。

由于 DRMMCs 本身固有的特点,如复合材料中 增强体与基体之间的不协调性,使其内部存在较高 的残余应力、基体中的位错密度很高且组态复杂,其 尺寸稳定性、强度、塑性、变形及断裂行为等多方面 均受到很大影响^[4~7]。

残余应力和基体高密度位错等决定了复合材料 变形的特殊性,数十年来大量研究人员对此进行了 深入的研究,并取得了重大进展。本文旨在详细介 绍这方面的研究成果,总结DRMMCs变形规律与机制。

2 DRMMCs 的弹性变形

2.1 DRMMCs 的弹性变形特点及弹性模量的测量

与未增强均质材料相比,复合材料内部存在残 余应力及增强体周围应力集中的复杂性,弹性应力 应变曲线呈现非线形和多线性,文献[8]研究了 25%SiCp/7075Al和25%SiCp/1100Al的弹性变形。 结果表明,7075铝基复合材料弹性变形曲线呈多线 形,具有连续纤维增强复合材料的特点;而1100铝 基复合材料弹性变形曲线则只有一小段线形区域, 随后是连续加工硬化曲线。

测量 DRMMCs 弹性模量较测量未增强合金的 弹性模量要困难得多。这是由于:一方面基体内部 的残余拉应力促进复合材料基体产生了拉伸变形;

宇航材料工艺 2001 年 第1期

收稿日期:2000-04-28

胡明,1962年出生,博士研究生,主要从事金属基复合材料残余应力及小变形行为等方面的研究工作

另一方面基体应力均匀性差,使高应力区过早地达 到屈服极限,相关微塑性变形引起弹性曲线过早偏 离线性关系。为了解决上述问题,提出了许多测量 复合材料弹性模量的方法^[9]

(1) 应力应变曲线斜率法

该方法有以下四种:

(a) 直接测量应力应变曲线起始线性部分的斜率, 见图 1 曲线 。由于这部分线段长度不定, 测量 误差大, 一般为 ±5 MPa。

(b) 通过测量预形变后再加载应力应变曲线上 斜率来测量复合材料弹性模量, 见图1曲线。

(c) 先对复合材料施加预应变,再对其进行拉伸 至一定应变量后卸载,测量卸载曲线上起始直线部 分斜率,即得到弹性模量,见图1曲线。

(d)首先对复合材料施加预应变,然后对其进行 低应力振幅循环,使得应力应变滞后环可以忽略不 计,最后测量卸载曲线斜率,见图1曲线。Al-SiC 复合材料弹性模量的测量精度可达到±0.7%。

Fig. 1 Schmatic diagram of elastic modulus measured by stress strain respond

(2)介质中的超声波波速法

它是通过材料密度和介质中超声波速来测量弹 性模量的。

(3) 共振法

它是通过测量复合材料固有震动频率来获得弹 性模量的。该方法不仅与材料本身特性有关,还取 决于试样形状和尺寸。

总之由于制备工艺、显微组织不同和测量上的 困难,使得弹性模量值分散度较大。

宇航材料工艺 2001 年 第1期

2.2 DRMMCs 弹性模量的影响因素

DRMMCs 弹性模量主要取决于复合材料中基体 向增强体载荷的传递效率^[8]。增强体承受的载荷越 高,其弹性模量越高。

影响弹性模量因素很多。主要有:增强相的体 积分数、排列方式、长径比、界面反应程度、基体合金 强度、变形温度和应变量等。复合材料的弹性模量 随体积分数(<30%)和长径比增加而升高;与增强 相随机分布时相比,增强相有序分布时的弹性模量 较高且呈现各向异性;界面干净、无反应物时弹性模 量较低^[10],反之,界面区以带状形式存在,界面带由 多个多晶体组成时,弹性模量较高。从某种意义上 来说,强化机制的发挥程度取决于基体与增强体之 间界面结合力的大小。但是界面反应要适度,若反 应过分强烈,则会使弹性模量迅速降低;DRMMCs 弹性模量随应变量增加先出现一短时常数,然后迅 速下降,其原因是微孔的发展和界面的失效^[8]。

3 DRMMCs 塑性变形

3.1 DRMMCs 塑性变形的规律和特点

由于增强体的加入,强烈地改变了复合材料基体中的微观组织结构和残余应力,所以复合材料的塑性变形有别于未增强合金的塑性变形。DRMMCs 塑性变形具有以下特点:由于增强体与基体热膨胀 系数差别较大,以致于材料形成后其内部就存在有 较高的局部应力,该应力超过基体的屈服强度时,既 产生局部塑变,弹、塑性过渡区在应力应变曲线上表 现为更加平滑,应力和塑变高度不均匀化(界面附近 与远离界面基体中的应力和塑变相差很大),并且由 于热残余应力的作用,拉伸与压缩应力应变曲线呈 现非对称性。在拉伸应力应变曲线上,见不到明显 的屈服点、屈服平台、颈缩现象。宏观屈服强度随增 强体含量和长径比增加而升高,但该效果随基体强 度的升高而受到限制。DRMMCs 的初始加工硬化率 较高^[10,11]。

大量实验表明,DRMMCs的屈服强度 0.2和抗 拉强度 b要远高于未增强基体合金屈服强度和抗 拉强度,见表1。这主要有下列原因。

(1) DRMMCs 中增强体具有很高的强度,且难于 发生塑性变形。它们与基体形成良好的界面后,基 体就可以将载荷传递到增强体上,减轻了自身的载 荷,从而提高了复合材料的屈服强度和抗拉强度^[9]。 (2) DRMMCs 中热错配应力松弛的结果,使基体 中产生大量高密度位错,位错之间的交互作用增加 了可运动位错的起始阻力,从而使其屈服强度明显 升高。从另一种意义上讲,复合材料的基体实际上 是被残余应力松弛严重加工硬化了的。所以,位错 强化是 DRMMCs 中的重要强化机制^[12]。高密度位 错引起的复合材料屈服强度增量可由公式(1)表 示^[12]:

$$CTE = G \cdot b \sqrt{1}$$

式中, 为常数, G为基体合金剪切模量, b为柏氏 矢量, 为平均位错密度。

(3)细晶强化。DRMMCs 一般具有非常细小的 晶粒度。细晶强化可通过 Hall - Petch 公式来计算, 即复合材料屈服应力由细晶强化引起的增量可用公 式(2)表示:

 M
 D^{1/2}[(1 - f)/f]^{1/6}
 (2)

 式中,为常数,其典型数值为 0.1 MPa ·m^{1/2}, D 为

 晶粒直径,f 是增强体体积分数。

表1 SiC/ AI 复合材料的力学性能 $[9]^*$

lab. 1	Mechanical	properties	of	SiCw/	Al	composites
--------	------------	------------	----	-------	----	------------

基体合金	增强相 形态	体积分数 _{Vf} / %	变形 方式	屈服强度 _{0.2} / MPa	抗拉强度 _b / MPa
6061	晶须	20	拉伸	414 (+135)	545(+245)
2024	晶须	15	拉伸	476(+140)	648(+150)
2024	晶须	20	压缩	476(+140)	648(+150)
5083	晶须	20	拉伸	280(+65)	320(+0)
6061	颗粒	15	拉伸	348(+62)	348(+40)
6061 (T6)	颗粒	20	拉伸	370(+100)	410(+130)
2124	颗粒	20	拉伸	410(+140)	480(+200)

*表中性能值为复合材料经挤压后沿挤压方向测试的结果;括 号内数字是复合材料相对未增强合金的强度的变化。

3.2 热错配应力引起的局部塑性变形

由于 DRMMCs 中基体与增强相晶体结构、热膨 胀系数的差异,在材料制备及随后处理过程中,将产 生热错配应力和热残余应力,这是 DRMMCs 的本质 特征。研究表明,热错配应力大于基体的屈服强度, 从而引起基体的局部塑性变形。尽管这种塑性变形 不一定产生宏观应变。但是它对复合材料后续变形 行为有很大的影响,故在此做简单介绍。 热错配应力随热膨胀系数之差和温差的增加而加大。当其增加至位错增殖应力(高于基体的屈服应力)时,造成界面周围基体产生局部塑性变形,位错密度急剧升高,可达10¹²个/m²~10¹⁴个/m²,是未增强铝合金位错密度10~100倍^[13],位错密度随离开界面距离的增加而减少。对于短纤维和颗粒增强铝基复合材料,缓解热错配应力的主要机制为位错在基体中冲孔,形成位错环。同时,热残余应力被保存下来。研究者普遍认为复合材料基体中存在平均残余拉应力,增强相中存在平均压应力^[5]。

首先,Fom和 Arsenault^[14]研究 SiC_w/Al 复合材 料中由热应力引起的碳化硅晶须周围基体的塑性变 形。晶体中的变形由滑移产生。塑性应变由滑移线 的数量及每组滑移线间距求得,其表达式为

$$spss = k \cdot N \cdot S \tag{3}$$

其次 Lee 等人在研究球形颗粒增强的复合材 料中热错配应力松弛行为时发现[15]:当错配应变一 定时,存在一临界颗粒尺寸,低于此临界尺寸将观察 不到松弛现象。临界尺寸存在的原因是热错配应力 大干位错产生所需要的应力(基体的屈服应力),而 基体的屈服应力与颗粒尺寸有关,当颗粒在微米级 或更大时,可认为有效屈服应力等于宏观屈服应力: 当颗粒尺寸小干微米级时,且与基体保持共格关系 时,塑性松弛变得非常困难,如果颗粒小于1µm时, 基体中的位错密度降低且无明显的位错密度梯 度^[6],这是因为颗粒尺寸较小时,基体有效屈服应力 与粒子尺寸成反比,热错配应力低于有效屈服应 力^[15]。因此小颗粒周围塑性区尺寸很可能比位错 攀移特征距离小,先增殖位错很可能达到塑性区前 沿、通过省应力来影响和限制位错进一步增殖。当 颗粒尺寸从 1 μ m 至 5 μ m 时,位错密度将明显增大。 对于具有一定长径比的颗粒,位错在颗粒尖角处的 增殖程度明显高于沿颗粒侧表面的增殖^[6,15]。

3.3 DRMMCs 微塑性变形

材料微屈服变形指塑性应变量很小时,材料的 应力应变关系(通常为1×10⁻⁶~2×10⁻⁶残余应变 量),它反映了材料在微小变形量下塑性变形的能 力,由于它与尺寸稳定化关系密切,成为目前人们研 究的焦点之一^[16]。针对 DRMMCs 的实际情况,文献 ^{宇航材料工艺}2001年 第1期 [17]提出了一种复合材料起始屈服点的新方法:将 应力应变曲线中第一个三阶导数^{d³}最小值点所对 应的应力作为起始屈服点 、。结果显示 、"明显 低于均质材料中的屈服强度 0.2。原因是均质材料 中的 ①无法区别起始屈服与高速率加工硬化率。 该作者将其做法应用 20 % SiC_w/ 2029Al 、12.5 % SiC_y/ 2618Al、17 %SiC。/ 8090Al 等合金中,都获得了满意的 效果,且与由有限元理论计算的结果相符合。研究 还发现,晶须增强铝基复合材料起始拉伸屈服强度

"高于起始压缩屈服强度 ";;而拉伸的屈服强度 02。却低于压缩时的屈服强度 02。,拉伸与压缩应 力应变曲线呈现非对称性。利用 Eshleby 模型计算 发现,晶须两端的基体受力为 - 700 MPa,中间部位 为+420 MPa.由于晶须两端的固有形状与其中间部 位不同,造成应力集中程度分布也不同,使其端部首 先发生变形,变形又必须克服其端部的压应力;而压 缩时由于其端部压应力的存在、显然很容易产生变 形。这说明 、对局部不均匀分布的应力十分敏 感、而后者产生的原因则与此完全不同。拉伸及压 缩的屈服强度。。是针对整个材料产生宏观塑性变 形时的强度,而该复合材料基体所受的平均应力为 拉应力,增强体为压应力,所以出现了上述现象。同 时残余应力也是 DRMMCs 包申格效应的主要原 因^[18]。

屈服强度与起始屈服强度 0.2 - 、 之差表明 材料早期的加工硬化行为,不同增强体系的复合材 料的硬化行为也是相似的。这主要是由于起始塑性 变形强化机制基本相同造成的。

根据位错理论,Brown和Lukens^[16]提出了金属 材料微屈服应力同微塑变之间存在着抛物线关系:

$$_{p} = d^{3}(-0)^{2}/2G_{0}$$
 (4)

式中 为可动位错密度, d 为晶粒尺寸, 为外加应 力, $_{0}$ 为第一位错运动所必需的应力, $_{G}$ 为切变模 量。上式也可以写成:

$$= _{0} + k \frac{1/2}{p}$$
 (5)

式中, $k = \oint G_0 / G^3$, $k \in 0$ 为材料组织结构敏感参 数。复合材料中颗粒体积分数、残余应力水平、不同 尺寸稳定化处理工艺均可对上述参数产生影响^[17]。 李义春等人^[19]对颗粒增强铝基复合材料微屈服行 宇航材料工艺 2001 年 第1期

为进行了研究,发现可用 Brown 和 Lukens 理论来分 析颗粒增强铝基复合材料的微屈服行为。结果表 明.冷热循环次数虽然对颗粒增强铝基复合材料微 屈服行为的宏观规律没有本质的影响,但是仍然影 响其微屈服行为。对球形颗粒而言,小应变量下的 微屈服强度随冷热循环次数的增加而增高 原因是 不同循环次数下的位错组态和残余应力有明显的不 同。

3.4 DRMMCs 宏观塑性变形

拉伸过程中,位错主要从晶界及近界面处开动, 向另一界面或晶界滑移,最后受阻于附近的增强体, 形成塞积群、此时基体位错密度明显增加。随着应 变量的增加,第二相周围的基体发生旋转,即各晶粒 的易滑移方向逐步转向与外切应力一致或近似一致 的方向,旋转区尺寸一半小于第二相的有效尺 寸^[13]。随后出现晶须或颗粒的断裂、界面的剥离及 增强相间未填充区开裂及基体开裂,此时已萌生裂 纹。裂纹一旦出现,均可松弛掉晶须或颗粒周围的 热残余应力,缓解裂纹尖端的应力场,释放了弹性 能,但只有基体开裂形成的微裂纹才能扩展成主裂 纹。当外载继续增加,基体中的微裂纹扩展,遇晶界 且其垂直裂纹时,裂纹尖端产生钝化,然后沿晶界扩 展。同时由于裂纹尖端形成应力集中使晶界另一侧 产生孔洞而后长大,使裂纹越过晶界扩展。在基体 塑性良好时,当裂纹与增强相相遇且垂直时,裂纹顶 端引起的应力集中不足以引起第二相另一侧基体的 开裂,裂纹便沿其侧面绕过。当裂纹遇到与拉伸方 向一致的增强相时,则会停止扩展。从此不难看出 增强相对裂纹扩展的阻碍作用,裂纹的扩展是以微 孔长大聚集方式进行的^[20]。

DRMMCs 压缩变形重点为高温压缩变形。复合 材料压缩变形行为可以由基体流变应力、沉淀强化、 弥散强化贡献的叠加来描述的。典型的 SiC_w/ Al 复 合材料高温压缩变形存在明显的应变软化现象^[21]。 研究表明^[22],在压缩变形过程中,SiC,的长轴要发 生转动,并趋向于垂直于压缩方向分布,同时伴随着 晶须的折断。晶须取向的重新分布和折断是复合材 料应力软化的主要原因,该现象导致了晶须承受载 荷下降。晶须的转动是由基体的塑性变形引起 的^[23],至于导致塑性变形位错滑移、攀移、交滑移与 晶须转动的关系则十分复杂,有待于进一步研究。

— 13 —

目前,两相合金中普遍被接受的看法是^[18,23]:第二 相转动是应力松弛的需要,是各个滑移系分别作用 于第二相粒子的叠加结果。一般认为,增强体的断 裂是应力集中造成的^[24],即当其转动和基体塑性变 形导致的应力松弛速度无法满足增强相转动速度时 则势必造成断裂。上述见解是对低于基体固相线温 度变形研究的结果。在高于液固两相区发现^[24]:晶 须转动和折断的程度明显降低。原因是液相的存在 改变了基体的塑性变形,并且晶须的折断并不是基 体的影响,而是晶须间作用的结果。试验表明^[25], 压缩温度在 540 ~ 620 范围内,压缩后复合材料 在垂直于压缩方向的抗拉强度和延伸率呈现上升趋 势。SiC_w/ 6061Al 液固两相压缩应变可达 57.1%~ 79.3%,其内部未出现裂纹和孔洞。

4 结束语

DRMMCs的变形是一个十分复杂的问题,它既 涉及到增加相自身的特性(晶体结构、强度、刚度、熔 点、热膨胀系数)及其体积分数、形状、分布、长径比, 又涉及基体的性质,尤其是界面的作用。另外许多 外界因素,如变形方式、加载速率、变形温度等都对 其变形产生十分重要的影响。

参考文献

1 吴人洁.金属基复合材料的现状及展望.金属学报, 1997;33(1):78~84

2 郝元恺. 非连续金属基复合材料的研究现状及展望. 材料导报,1994;(5):67~71

3 Zedalis M S,Bryant J D, Glman P S. High-temperature discontinuously reinforced aluminum . JOM. ,1991;8:29~31

4 Arsenault R J , Taya M. Thermal residual stresses in metal matrix composites. Acta. Metal. ,1987;35(3): 651 ~ 659

5 Sun Z M, Li J B, Wang Z G et al. Residual stresses in silicon carbide particulate reinforced aluminum composites. Acta. Metal. Mater. $,1992;40(11):2961 \sim 2966$

6 Davis L C ,Alliwion J E. Residual stresses and their effects on deformation in particulate reinforced metal matrix composites. Metal. Trans. ,1993; $24A(11) : 2487 \sim 2496$

7 Mary Vogelsang, Arsenault R J, Fisher R M. An in situ HREM study of dislocation generation at Al/ SiC interfaces in metal matrix composites. Metal. Trans. , 1986;17A(3): $379 \sim 389$

8 樊建中,姚忠凯,杜善义等. SiC 颗粒增强金属基复 合材料弹性模量与界面结合状况关系研究.复合材料学报, 1998;15(2):1~5 9 Clyne T W, Withers P J. An introduction to metal matrix composite. Cambridge University Press. ,1993:380

10 Fei W D Jiang X D Li C, Yao C K. Effect of reaction on the young 's modulus of aluminum borate whisker reinforced aluminum composite. J. Mater. Sci. Letter ,1996;15:1 966 ~ 1 968

11 克莱茵 TW,威瑟斯 PJ,余永宁,房忘刚译.金属基 复合材料导论.冶金工业出版社,1996:359~369

12 刘秋云. SiCw/ Al 复合材料热残余应力的研究.哈尔滨工业大学博士论文,1998:3~20

13 Prangnell B ,Downes T ,Stobbs W M ,Withers P J. The deformation of discontinuously reinforced MMCs — . The Initial Yielding Behavior. Acta. Metal. MATER. , 1986;17A:379

14 Flom Arsenault R J. Deformation in Al - SiC composite due to thermal stresses. Mater . Sci. Eng. ,1985;75:151 ~ 167

15 Kim C T,Lee J K,Plichta M R. Plastic relaxation of thermoplastic stress in aluminum / ceramic composites. Metal. Trans. , 1990;21A(3): $673 \sim 681$

16 Brown N, Lukens Jr K F. Acta Met., 1961;9:106

17 Barlow C Y, Hansen N. Deformation structures and flow stress in aluminium containing short whisker. Acta. Metal. Mater. , 1991;39(8):1 971 ~ 1 979

18 李文方,蒙继龙,杜善义. 晶须增强金属基复合材 料的包申格效应.复合材料学报,1996;13(21):94~97

19 李义春, 樊建中, 张奎等. 冷热循环对颗粒增强铝 基复合材料微屈服行为的影响. 中国有色金属学报,1998;9: 399~404

20 Dunand D C ,Mortensen A. On plastic relaxation of thermal stresses in reinforced metal. Acta. Metal. Mater. , 1991;39(2):127 ~ 139

21 Levin I, Kaplan W D, Brandon D G. Residual stresses in
Aluminum - SiC nanocomposites. Acta. Metal. Mater., 1994;42
(4):1 147 ~ 1 154

22 Lederuch D J ,Sastry S M L. Short communication : deformation behavior of Silicon Carbide whisker reinforced Aluminum composites. Mater. Sci. Eng. ,1988 ;55 :143 ~ 146

23 Barlow C Y, Hasen N. Deformation structures in Aluminum containing small particles. Acta. Metal. ,1989;37 (5):1 313
 ~ 1 320

24 Koeller R C ,Raj R. Diffusion relaxation of stress concentration at second phase particles . Acta. Metal. , 1978 ; 26 :1 551 $\sim 1~558$

25 Fleischmann P G, Kagawa Y, Kishi T. Deformation and failure process of an Aluminum matrix composite reinforced with short carbon fibers. Materials Science and Engineering ,1992;150A: $L1 \sim L4$

宇航材料工艺 2001 年 第1期

— 14 —