C/E复合材料声发射信号小波分析及 人工神经网络模式识别

王 健 金周庚 刘哲军

(航天材料及工艺研究所 北京 100076)

文 摘 以复合材料为对象,以宽频带传感器及线阵列方式对各类模式试样采集了波形及信号参数,比 较波形、信号参数、频谱及小波谱的特征,筛选出六类1300个样本,采用多分辨小波变换提取了5个特征向 量,实现了特征空间的降维处理,采用 B—P型反向传播神经网络构成了智能化模式分类器,研究了网络模 型的学习效果和对与复合材料主要损伤机制有关的六类声发射信号的识别能力。试验结果表明,神经网络 对六类信号的平均正确识别率达到90.4%。最佳识别率为97.2%。该方法成功用于90°0°%滑和0缺口三 种试样的破坏过程分析,获得了满意的效果。

关键词 C/E复合材料,声发射,小波分析,人工神经网络,模式识别

Wavelet Analysis and Pattern Recognition of Acoustic Emission Signals From C/ E Composites

Wang Jian Jin Zhougeng Liu Zhejun

(Aerospace Research Institute of Materials & Processing Technology Beijing 100076)

Abstract The comprehensive messages of six types of pattern signals such as broadband waveforms, AE parameters , analog parameters were collected with linear location simultaneously. Features of signals were analyzed for waveform, AE parameters , FFT spectrum and wavelet transform , in which 1 300 samples were selected. The dimensional reduction of feature space was brought out by algorithm of multi-resolution wavelet transform , in which 5 features were extracted from each sample. An intelligent pattern classifier with B-P neural network was used in studying the learnt effect of network and the recognition ability for unknown flaw. Experiments showed that the results of recognition were satisfactory when the wavelet spectrum was taken as a sample feature vector. The average recognition accuracy of the six types of flaws was about 90.4 % , and the best recognition accuracy amounted to 97.2 %. The method has been applied to describing the entire three-point flexural failure process successfully for 90 ° and 0 ° specimens with no notch and 0 ° notched specimens.

Key words C/E composites ,Acoustic emission ,Wavelet analysis ,Artificial neural network ,Pattern recognition

声发射技术作为一新兴动态无损检测技术,在 损伤的起始与扩展的检测方面已有许多成功应用的 例子^[1,2],但在该领域中,损伤模式的识别是公认的 难题之一。

纤维断裂、基材开裂、界面分离、分层、劈裂和界 面摩擦是纤维增强复合材料的典型的破坏机制,也

王健,1974年出生,硕士,主要从事声发射的研究和检测工作

宇航材料工艺 2001 年 第1期

收稿日期:2000-01-26;修回日期:2000-04-25

是可测的声发射源。源的机制与声发射信号之间有 一定的因果关系。然而,不同的破坏机制通常以组 合形式出现,其响应为瞬态随机信号,类别特征相互 重叠,且又受介质的传播特性及传感器的转换特性 的复杂影响,这些都加大了声发射信号鉴别的难度。

近年来,声发射信号模式识别技术从常规信号 参数鉴别^[2]正逐步向波形鉴别^[3]、频谱鉴别^[4]、小波 鉴别^[5]、模式识别^[6,7]及人工神经网络识别^[4,8]等新 兴信号处理技术的方向发展。其中,宽频带信号可 提供更为丰富的模式信息,小波变换较常用的频谱 变换更适合于短数据序列瞬态信号的表征,提供更 高的频率分辨率,人工神经网络模式识别对数据量 多、特征复杂的信号可提供自动分类能力,但此三种 技术组合用于声发射信号模式识别尚未见到报道。

本文组合应用宽频带信号样本的获取、小波变 换及类别特征提取、有监督神经网络模式识别等技 术,研究了与碳纤维增强复合材料试样损伤有关的 六类信号的识别技术和能力,并用于 90 ° 0 ° 光滑和 0 缺口试样的破坏过程分析,获得了满意的结果。

1 试验方法

- 50

试样类型和尺寸如表1所示。

表1 试样类型和尺寸

Iab.	1 Types, size	e and deformation modes of	specimens
类	型	尺寸/ mm	变形模式
树	脂	65.0 ×14.5 ×4.5	三点弯曲
<u>44</u>	束	200.0	拉伸
90 १	式样	120.0 ×15.0 ×2.5	三点弯曲
0 光清	骨试样	120.0 ×15.0 ×2.5	三点弯曲
0 缺口	〕试样	120.0 ×15.0 ×2.5	三点弯曲

树脂试样和丝束试样分别用来选取基材开裂和

纤维断裂的原始信号特征;90 试样用来选取基材开 裂和界面分离的原始特征;0 缺口试样用来选取分 层和劈裂样本集;0 光滑试样用来选取纤维断裂、基 材开裂、界面分离和摩擦等类别的样本集。

试验采用 PAC 公司 MISTRAS —2001 全数字式 声发射系统,用两个 WD 型宽频带传感器组成线定 位阵列方式,同时采集每个波击的波形、信号参数和 外加变量。波形采样率为 4 MHz,采集长度为 2 048 点。采集的信号参数包括:到达时间、事件计数、幅 度、持续时间、能量和 ASL 等。外加变量包括:载 荷、挠度和经历时间。加载采用 WD —10 型材料试 验机,载荷头速度为 1 mm/min。

三点弯曲试样不易受加载点的噪声干扰,易于 控制损伤部位,且尺寸小,因而作为主要试样类型。 弯曲试验采用连续、分级和反复加载等程序,以获得 各类损伤及损伤界面摩擦的信号。

电子扫描和金相分析用于断口或不同损伤阶段 降载试样的损伤特征观察。

2 结果和分析

2.1 类别特征及样本集筛选

各类样本集首先来自不同的模式试样。其声发 射线定位主要集中在主损伤或最终断裂部位,多呈 山峰型。各试样线定位及幅度—持续时间关系一例 见图1,其中,定位图用来限定样本信号的位置,关 系图用来表征常规参数的类别特征。考虑到声源的 位置及波的传播对类别特征的复杂影响,将所有样 本取自主损伤区宽10 mm 范围内的事件。对典型事 件的波形、信号参数、频谱及小波谱经过反复的比较 分析,共筛选出六类1299个样本数据集,各类别声 发射信号的典型图形及来源、类别特征分别示于图 2~7和表2。

图 1 0 试样线定位及幅度 ---持续时间关系图

Fig. 1 Linear location and amplitude Vs duration of 0° specimen

宇航材料工艺 2001年 第1期

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

-7

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(d) 小波谱
 图 6 界面分离信号特征图
 Fig. 6 Interfacial separation

纤维断裂样本参考丝束信号特征取自 0 °试样。 如图 2 和表 2 所示,纤维断裂信号波形为高频窄脉 冲,以膨胀波模式为主,其傅立叶变换(FFT) 主峰频 率在 420 kHz ~ 600 kHz,小波等高图的特征峰约集 中在 400 kHz 和 40 µs 处,小波谱峰值位于第五频段 内。

界面分离和基材开裂样本参考 90 试样的信号 特征,取自 0 试样。如图 5 和表 2 所示,基材开裂波 形以低频低幅度弯曲波模式为主,信号幅度和持续 时间分别约小于 60 dB 和 200 µs,FFT 主峰频率位于 为 100 kHz ~ 150 kHz,小波等高图的特征峰约集中 在 150 kHz 和 50 µs 处,小波谱峰值位于第二频段 内。

— 53 —

			信号参数(图1)		FFT 主峰	小油竿	
信号来源	加载方式	波形特征	幅度	持续时间	FFI 土暉 紡塞/kHz	小波寺 高线图	样本个数
			/ d B	/µs	9%+/ KIZ		
纤维束	拉伸	膨胀波模式为主,		< 50			
0 % 滑	三点弯曲	高频,窄脉冲	< 80		420 ~ 600	图 2	446
试样		(见图2)		< 100			
0 缺口 试样		弯曲波模式为主,					
	三点弯曲	低频,中幅,宽脉冲	> 55	> 200	100 ~ 150	图 3	147
		(见图3)					
0 缺口 试样		弯曲+膨胀波模式,		A 1	54711	<u> </u>	
	三点弯曲	中频,中幅,宽脉冲	> 55	> 200	150 ~ 250	图 4	335
		(见图4)					
树脂试样		弯曲波模式为主.	710				
90 试样	三点弯曲	低频,低中幅	< 60	< 200	100 ~ 150	图 5	92
0 光滑试样	7	(见图 5)					
00 97 ¥¥		弯曲 + 膨胀波模式					
90 1411+	二占峦曲	马西飞加派放快20,	< 60	< 200	150 ~ 250	图6	161
0 % 滑试样	<u>———————————</u> —————————————————————————		< 00	< 200	150 250	1210	101
0 2019 12014		(见图0)					
0 光滑试样	一上亦曲	弯曲波模式为主,					
	二只穹田 重复加载	低频,中幅,宽脉冲	< 70	> 200	90 ~ 120	图 7	118
		(见图 7)					
	信号来源 <u>纤维束</u> 0 光滑 试样 0 缺口 试样 0 缺口 0 微 4 0 微 7 0 代 7 0 代 3 0 代 3 0 代 3 0 代 3 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5	信号来源 加载方式 纤维束 拉伸 0%況滑 三点弯曲 0缺口 三点弯曲 0缺口 三点弯曲 0缺口 三点弯曲 0缺口 三点弯曲 0缺口 三点弯曲 0%沿前试样 三点弯曲 0%治祥 三点弯曲 0%消试样 三点弯曲 0%消试样 三点弯曲 0%消试样 三点弯曲	信号来源 加载方式 波形特征 纤维束 拉伸 膨胀波模式为主, 0%滑 三点弯曲 高频,窄脉冲 过样 三点弯曲 (见图 2) 0 缺口 三点弯曲 弯曲波模式为主, 试样 三点弯曲 (见图 3) 0 缺口 三点弯曲 弯曲 + 膨胀波模式, 试样 三点弯曲 弯曲 + 膨胀波模式, 0 缺口 三点弯曲 (见图 3) 0 缺口 三点弯曲 弯曲 + 膨胀波模式, 0 缺口 三点弯曲 (见图 4) 树脂试样 三点弯曲 (见图 5) 90 钻样 三点弯曲 (见图 6) 0 光滑试样 三点弯曲 雪曲波模式为主, 0 光滑试样 三点弯曲 (见图 7)	信号来源 加載方式 波形特征 信号 1	信号来源 加载方式 波形特征 信号参数(图1) 信号来源 加载方式 波形特征 幅度 持续时间 (dB 1/4年 拉伸 膨胀波模式为主, 高频,窄脉冲 (见图2) ~400 ~100 1/14 三点弯曲 原频,窄脉冲 (见图2) ~50 ~100 0 缺口 试样 三点弯曲 弯曲波模式为主, (见图3) ~55 ~200 0 缺口 试样 三点弯曲 弯曲 +膨胀波模式, 中频,中幅,宽脉冲 (见图4) ~55 ~200 0 缺口 试样 三点弯曲 弯曲 +膨胀波模式, 中频,中幅,宽脉冲 (见图4) ~55 ~200 0 缺口 试样 三点弯曲 弯曲 + 膨胀波模式为主, (见图5) ~60 ~200 90 试样 0 光滑试样 三点弯曲 弯曲 + 膨胀波模式, (见图5) ~60 ~200 0 光滑试样 三点弯曲 弯曲 + 膨胀波模式, (见图5) ~60 ~200 0 光滑试样 三点弯曲 弯曲 + 膨胀波模式, 中频,低中幅 ~60 ~200 0 光滑试样 三点弯曲 弯曲 - 膨減,低中幅 ~60 ~200 0 光滑试样 三点弯曲 弯曲 波模式为主, (见图 6) ~60 ~200 0 光滑试样 三点弯曲 弯曲 波模式为主, (见图 7) ~70 ~200	信号未源 加载方式 渡形特征 信号参数(图 1) FFT 主峰 所理 1 拉伸 膨胀波模式为主, //B //B //B 1 1 1 (0)	信号未源 加報方式 波形特征 信号参数(图1) FT 主峰 小波等 「規車 拉伸 膨胀波模式为主、 //48 //48 //48 //48 高线图 0 光滑 三点弯曲 高頻,容脉冲 <80

表 2 模式特征一览

Tab. 2 AE characteristics of damage types for each specimen

如图 6 和表 2 所示,界面分离波形呈低幅度弯曲波和膨胀波模式的混合型,其信号幅度和持续时间与基材开裂相似,FFT 主峰频率位于 150 kHz ~ 200 kHz,小波等高图的特征峰约集中在 250 kHz 和 50 µs 处,小波谱峰值位于第三、四频段内。

分层是指层合板复合材料在应力作用下铺层间 的分离;而劈裂是指沿0纤维方向的穿层纵向开裂。 分层和劈裂信号均取自0缺口试样中。如图3和表 2所示,分层波形为以低频弯曲波模式为主的中高 幅度宽脉冲信号,信号幅度和持续时间分别约大于 55 dB和200μs,FFT主峰频率位于100kHz~150 kHz,小波等高图的特征峰约集中在150kHz和70μs 处,小波谱峰值位于第二频段内。

如图 4 和表 2 所示,劈裂信号波形为以中低频 弯曲波为主的中高幅度宽脉冲信号,信号幅度和持 续时间特征与分层相似,但 FFT 主峰频率和小波特 征峰频率有所不同,分别位于150 kHz~250 kHz、200 kHz 和 100 µs,小波谱峰位于第三和第四频段。

界面摩擦是指分层、劈裂等宏观损伤界面之间 — 54 — 的相对摩擦机制而言。其样本取自0°试样的重复加 载程序中的升载和降载周期。如图7和表2所示, 摩擦信号波形呈低频、中低幅度、宽脉冲的弯曲波模 式特征,其信号幅度和持续时间分别约小于70dB 和大于200µs,FFT主峰频率位于90kHz~120kHz, 小波等高图的特征峰约集中在100kHz和170µs 处,小波谱峰值位于第一频段内。

以上表明,信号的常规参数、波形、频谱和小波 变换等类别特征均有不同程度的重叠,但对六类信 号均显示出一定的鉴别能力,尤其是小波变换的类 别特征更为明显,这些又为各类样本的比较筛选提 供了依据。

2.2 小波分析

设 是定义在(- ,+)上能量有限的函数,则按如下方式生成函数族{ a, b}

$$_{a,b}(t) = \left| a \right|^{-\frac{1}{2}} \quad \left(\frac{t-b}{a} \right)$$

< b < + , a > 0

式中 (*t*)称为小波母函数(Mother Wavelet)或 宇航材料工艺 2001年 第1期 小波函数, *a*,*b*(*t*) 是通过母函数 (*t*) 的展缩和平移生成的,称为小波基函数,其中 *a* 为尺度参数,*b* 为位置参数。

任一信号 s(t) 的小波变换(Wavelet Transform) 定义为信号和小波基函数的内积,即

$$WT(s(t); a, b) = W_{s}(a, b)$$

$$= s, a, b = s(t) + s(t) dt$$

$$= |a| + \frac{1}{2} + s(t) + s(t) dt$$

$$= s(t) + s(t) + s(t) dt$$

小波包分解是小波分析方法的一种,即多小波 基分解,也是本文中应用的方法。小波包基形如 $\{2^{k/2}W_n(2^kt - j): n N, k, j Z\}, k$ 表示尺度, j 表 示时间位移,而 n 表示振荡参数,这样 $W_n(2^kt - j)$ 表示的是尺度为 k,中心在 2^{-kj} 的小波函数。

图 8 为本文信号分析采用的小波包分解树。

图 8 小波包分解树 Fig. 8 Decomposition tree of wavelet package

对 C/E 复合材料损伤声发射的小波包分解等 高线图见图 2~图 7,为满足神经网络输入的要求, 对小波包分解数据进行了压缩处理,方法是计算各 分解频段的小波能量,使模式特征减少为 10 个,进 一步去除冗余,最后的模式特征取为 5 个(图 8 中分 枝标注为 *的能量),并以此特征作为神经网络的输 入数据。

2.3 人工神经网络模式识别

9

图 9 是本文中采用的一个两层神经网络的结构 图。网络的各层依次排列,上一层的神经元只接受 下一层神经元输出的信号,输入节点没有计算功能, 宇航材料工艺 2001 年 第 1 期 只是为了标明输入值。其它各层神经元都有计算功 能。每个神经元有多个输入,但只有一个输出。输 入层和输出层称为可见层,中间层称为隐含层,隐含 层中的神经元称为隐节点。网络结构为5 x5 x6。

激励函数采用单极型 Sigmoid 函数(又称 S 形函

数)

图 9 两层神经网络结构示意图

Fig. 9 Configuration of two layers neural network

局部最小问题是由 BP 算法本身决定的,而采用 Nguyen-Widrow 初始值设定法,可通过设置网络初始权值,有效地避免落入局部最小处。

网络训练样本数据为小波谱特征向量,采用多 组样本训练方式。训练样本数为14组,经过近240 万次的训练,网络的训练误差达到最小。经单组训 练样本的测试,误差均衡。为了检测网络的训练效 果,用网络对训练数据进行了识别,识别率达到 100%,证明该网络具有较强的学习能力,能按规定 的输入一输出关系建模。为了检验网络的推广应用 性能,用该网络对待识样本进行了识别检验,结果见 表3。

表 3 网络对待识样本模式识别的检验结果

Tab. 3 Recognition ratio for all samples

模式类别	待识样本数	识别正确数	识别正确率/%
纤维断裂	432	399	92.4
分层	133	126	94.7
劈裂	321	312	97.2
基材开裂	78	73	93.6
界面分离	147	137	93.2
摩擦	104	94	90.4
总计	1 215	1 141	93.9

— 55 —

从表 3 的结果看到,人工神经网络对非训练样 本的识别率最低在 90 %以上,表明该人工神经网络 的泛化能力较高,设计结构基本合理,具有良好的推 广价值。

3 模式识别在破坏过程分析中的应用

本文所提供的神经网络模式识别方法,已用于 90 试样、0 缺口试样和 0 光滑试样的三点弯曲破坏 过程分析。本破坏过程分析仅限于主损伤区宽 20 mm 范围内的声发射信号。

图 10、图 11、图 12 分别给出 90 试样、0 光滑试 样和 0 缺口试样三种试样的各类事件计数随时间 (或载荷)的变化曲线。

从图 10 可见,正如预料,90 试样断裂过程中没 有出现纤维断裂和劈裂信号,而分层和摩擦信号只 是在高载荷下少量出现,反映出进入严重损伤阶段。 基材开裂和界面分离信号在整个破坏过程中占很大 的比例,约 80 %。该结果表明,90 试样的破坏过程 主要为基材开裂和界面分离机制所控制,这一点也 与实际断口形貌的观察结果相符。

从图 11 可见,0 % 滑试样弯曲破坏过程,明显 的声发射信号约在 3 min 处开始,约在 6 min 处各类 信号开始快速增加,但与 90 %试样不同,所有六种损 伤机制都有出现,其中纤维断裂所占的比例最大,其 次是基材开裂和界面分离,而分层、劈裂及界面摩擦 等宏观损伤信号则到高载严重损伤阶段才开始出 现,反映出明显的严重损伤阶段特征。这些结果也 与对 0 %试样所预料的特征相符。

从图 12 可见,0 缺口试样的破坏过程中,所有 六种破坏模式信号也均有出现,但与光滑试样有明 显差别。约在 1 min 处开始的起始损伤主要为基材 开裂和界面分离机制所控制,约在 100 s 处开始的严 重损伤阶段,各类信号均快速增加,尤其是分层和劈 裂信号,并占有很大比例,同时也伴随出现界面摩擦 信号,明显反映出严重损伤阶段的特征。此外,从中 也可以看出缺口对引发分层、劈裂等宏观损伤机制 方面的作用。

以上表明,本文所提供的模式识别技术,可根据 各类事件计数随载荷的变化曲线来表征各类损伤的 起始与扩展的行为和损伤的主要机制及其所占的比

图 11 0 光滑试样各类事件计数随时间(或载荷)的变化 Fig. 11 Percentage counts of identified signal types as a function of time(or stress) (0°specimen)

图 12 0 缺口试样各类事件计数随时间(或载荷)的变化 Fig. 12 Percentage counts of identified signal types as a function of time (or stress) (0 ° notched specimen)

4 结论

(1)设计应用宽频带信号的小波变换为类别特
 征向量的有监督人工神经网络,成功地识别出与 C/
 E复合材料损伤有关的六类声发射信号,识别正确
 宇航材料工艺 2001年 第1期

2

— 56 —

率大于待识样本的 90.4%。

(2)根据模式试样、源定位及信号的波形、常规 参数、频谱、小波谱等特征的综合比较,为有监督分 类器筛选出离散性小、质量较高的各类模式样本集。

(3) 宽频带声发射信号的小波变换,其类别特征 明显,也易于压缩特征个数,适合于网络进行多模式 多组数据的训练。

(4) 提供的模式识别方法,用于三种 C/ E 复合 材料试样破坏过程分析,显示出良好的应用潜力。

(5) 就实际应用而言,信号样本与模式的严格对 应关系,实际铺层及其构件、声源的位置及传播衰减 对波形的影响,训练效率的改善等问题,仍有待于进 一步的研究。

致谢 清华大学刘时风博士提供了应用软件,空军第一 研究所耿荣生教授提供了宽频带声发射传感器,在此表示衷 心感谢。

参考文献

1 金周庚. 钛合金气瓶声发射检测进展. 见: 第六届全

国声发射会议论文集,四川,1995:100~103

2 金周庚.碳—环氧复合材料声发射检测技术研究.航 天科技报告,HT—920098,航空航天工业部

3 Michael R Gorman. Acoustic emission for the 1996s. In: Ultrasonics Symposium ,1991 :1 039 ~ 1 046

4 刘时风.焊接缺陷声发射检测信号谱估计及人工神 经网络模式识别研究.清华大学博士学位论文,1996

5 Hiroaki S, Tetsuo K, Mikio T et al. Fracture-mode detection of glass-fiber composites by AE processing. In : Progress in A-coustic Emission VIII, 1996:47 ~ 52

6 Kanji Ono , Qixin H. Pattern recognition analysis of acoustic emission signals. In : Progress in Acoustic Emission VII , 1994 :69 \sim 78

7 Anastassopoulos A A ,Vahaviolos S J , Lenain J C. Signature recognition of acoustic emission from FRP structures. In : 7^{th} EC-NDT , Copenhagen , 1998

8 Adriano Almeida , Eric v K Hill. Neural network detection of fatigure crack growth in riveted joints using acoustic emission. Material Evaluation , 1995; $1:76 \sim 82$

(上接第 39 页)

4 结论

(1)对蜂窝夹层结构常见的缺陷/损伤形式、修补方法以及修补时对设备、材料及工艺的要求等进行了分析、归纳、总结。这对蜂窝夹层结构的修补工艺研究有一定的指导意义。

(2) 在对航天产品中的蜂窝夹层结构的典型缺陷损伤事例进行调研的基础上,着重对灌注修补材料和工艺进行了研究。研制出了合乎要求的低密度 灌注修补材料如 G7A —20。它可室温固化,适于操作,密度 0.8 g/ cm³,剥离强度 29.4 N/ cm、拉离强 度 3.4 MPa;修补后强度和模量恢复原结构设计许 用值的80%以上,扩大样件对比试验表明其修补效 率可达116%。

参考文献

1 Horton R E, McCarty J E. Adhensive Bonded Aerospace Structure Standardized Repair Handbook. AD - A 055 684,1977

2 Dang Jiali et al. Repair of large aluminum hoeycomb sandwich fairing for launch vehicles. In : China- European Union Workshop on New Materials Research ,Beijing ,China ,1998 :173

3 Wegman R E, Tullos T R. Hand Book of Adhesive Bonded Structure Standard Repair Handbook. USA :Noyes Publication, 1992

宇航材料工艺 2001 年 第1期

— 57 —