辐照 APMOC 纤维对其复合材料拉伸强度的影响

邱 军

(沈阳化工学院材料科学与工程系 沈阳 110021)

刘立洵 张志谦 黄玉东

(哈尔滨工业大学应用化学系 哈尔滨 150001)

文 摘 采用 射线辐照方法对 APMOC 纤维进行改性处理。结果表明,在 500~k Gy 辐照剂量条件下, APMOC 纤维发生了辐照交联反应,使其复合材料的复丝拉伸强度提高 8.2%,横向拉伸强度提高 16.1%,同时利用 SEM 对拉伸断口形貌进行了分析。

关键词 射线 .APMOC 纤维 .辐照剂量 .拉伸强度

Effect of Radiating APMOC Fibers on Tensile Strength of its Reinforced Composite

Qiu Jun

(Shenyang Chemical Institute of Technology Shenyang 110021)

Liu Lixun Zhang Zhiqian Huang Yudong
(Harbin Institute of Technology Harbin 150001)

Abstract In this paper -ray radiation technique is used to treat APMOC fibers. The results show that APMOC fibers may have crosslinking reactions at radiation dose of 500 kGy. As a result, transverse tensile strength of its reinforced composite is increased by 16.1% and the fiber bundle tensile strength of AFRP is increased by 8.2%. Moreover, the fracture section of the bundle tensile and transverse tensile specimens are examined by SEM.

Key words -ray, APMOC fiber, Radiation dose, Tensile strength

1 引言

在高性能复合材料增强纤维中,含有苯并咪唑环聚芳酰胺的APMOC纤维,其物理、力学性能最佳。APMOC纤维增强复合材料简称AFRP^[1]。APMOC纤维分子链刚直、结晶性好,表面极性不高;分子间氢键较弱,横向强度低,纤维易微纤化,这些导致其与树脂基体结合的界面强度低,影响了AFRP综合性能的发挥,达不到现代航天战略武器的高性能要求,因此必须对APMOC纤维进行改性处理。为了使APMOC纤维处理工艺简单、效率高、性能分散性小,

我们对化学方法、物理方法处理的优缺点进行了比较^[2,3],采用 射线对 APMOC 纤维进行辐照改性。探索了辐照剂量对 AFRP 复丝拉伸强度、横向拉伸强度的影响,同时对其破坏模式及拉伸性能改善的原因进行了分析,为 APMOC 纤维改性技术应用提供了实验数据和理论依据。

2 实验部分

2.1 原材料及设备

APMOC 纤维为俄罗斯化学联合体生产;基体树脂为环氧 E—51,无锡树脂厂生产;固化剂为2—乙

收稿日期:1998 - 12 - 14:修回日期:1999 - 12 - 22 邱军,1969 年出生,硕士,主要从事复合材料及塑料改性的研究工作

叫牛,1909年山土,侧上,土安从争复占材料及尘料以往的研九上1

宇航材料工艺 2000年 第3期

基 -4 —甲基 —咪唑 ,天津市化学试剂厂生产 ;辐照 源 (60 Co) 为 7.4 ×10 14 Bq ,哈尔滨光雅辐照技术有限 公司提供。

2.2 样品的制备及测试

2.2.1 复丝拉伸样品制备及测试

将环氧树脂与固化剂按比例称取 5.35 g,溶于 30 mL 丙酮中制成浸渍液,将辐照及未辐照纤维放入浸渍液中浸渍 10 min,然后缠绕于固定框上,要求纤维均匀、平行且拉紧。按照固化工艺固化后,制成复丝样品。在复丝样品两端粘结固定片,规格 20 mm ×20 mm,必须保证每个样品长度为 200 mm。

复丝拉伸强度的测试方法按 GB —348 —87《芳纶复丝拉伸性能测试方法》进行。

2.2.2 横向拉伸样品制备及测试

将 APMOC 纤维制成单向板 ,要求纤维具有良好的平行性。按照 CB3354 —82《定向纤维增强塑料拉伸性能试验方法》标准进行测试。试样尺寸为 50 mm ×15 mm ×1.5 mm。加载速度为 2 mm/ min。

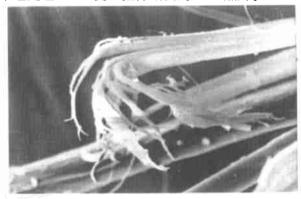
3 结果和讨论

3.1 射线辐照对 AFRP 复丝拉伸强度的影响

在 N_2 作为辐照气氛条件下 ,测得辐照剂量与复 丝拉伸强度的关系见表 1 。

表 1 辐照剂量与复丝拉伸强度的关系

Tab. 1 Correlation between radiation dose and the bundle tensile strength

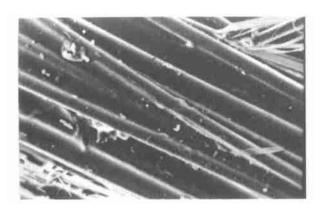

辐照剂量/kGy	束丝拉伸强度/ GPa	变化率/%
0	3.41	-
60	3.42	0.3
90	3.45	1.2
150	3.36	- 1.5
250	3.52	3.2
350	3.59	5.3
500	3.69	8.2
700	3.56	4.4
1 000	2.97	- 12.9
1 500	2.89	- 15.3

从表 1 可以看出 ,随着辐照剂量的增加 ,复丝拉伸强度有上升趋势 (在 150 kGy 辐照下 ,变化率为 - 1.5 % ,可能是由实验误差造成的)。当辐照剂量为 500 kGy 时 ,复丝拉伸强度提高了 8.2 % ,辐照剂量继续升高时 ,复丝拉伸强度有所降低。当辐照剂量升到 1 000 kGy 时 ,复丝拉伸强度已明显低于未处理纤维 ,在辐照剂量为 1 500 kGy 时 ,复丝拉伸强度已下降了 15.3 %。上述结果主要源于纤维本体结构的变化。辐照作用可以使 APMOC 纤维分子发生

宇航材料工艺 2000 年 第 3 期

交联与裂解反应,而交联反应与裂解反应又是相伴而生的。在700 kGy之前,交联反应占优势,纤维之间结合力增强,AFRP复丝拉伸强度提高。在500 kGy时,复丝拉伸强度提高幅度最大,达8.2%,说明在500 kGy时,APMOC纤维交联度最高,其后交联度下降,在1000 kGy辐照剂量下,交联度低于裂解度,纤维分子表现为网状结构减少,分子链呈断裂状态,AFRP的复丝拉伸强度随之下降。

图 1 是 APMOC 纤维经 500 kGy 辐照处理后与 未经处理 AFRP 复丝拉伸断口的 SEM 照片。


(a) 辐照前复丝断口 1 450 x

(b) 辐照后复丝断口 2 550 x

c) 辐照前复丝断口 367 x

(d) 辐照后复丝断口 367 × 图 1 复丝拉伸断口形貌

Fig. 1 Fracture sections of the bundle tensile specimens

对比图 1(a)、(b),可以明显看出,未处理纤维[图 1(a)]复丝拉伸断口产生微纤劈裂破坏,断口微纤明显分丝,影响 AFRP 拉伸性能。而处理后[图 1(b)]断口没有明显微纤劈裂现象,断口比较齐整。说明经辐照处理后,纤维微纤之间彼此发生了交联即发生辐照交联反应,使微纤化程度减少,拉伸强度提高。图 1(c)、(d)分别为未处理与处理纤维复丝拉伸断口上部,此部分是承受拉伸应力区。可以看出,未经处理纤维在拉伸力的作用下已经微纤化,微纤大部分已不完整,而处理后纤维大部分保持完整,没有微纤化,这样能使应力更好分散,承受更大拉伸力,拉伸强度便会提高。

3.2 射线辐照对 AFRP 横向拉伸强度的影响

按照 APMOC 纤维单向板复合材料成型工艺制备含胶量均匀、纤维平行程度良好的样品。对比辐照处理复丝拉伸强度提高显著的 500 kGy 辐照剂量处理与未处理纤维的 AFRP 样品,测试结果如表 2 所示。

表 2 辐照对横向拉伸强度的影响

Tab. 2 Effect of fiber radiation on transverse tensile strength of composites

辐照剂量 /kGy	横向拉伸强度 /MPa	平均值 /MPa	变化率 / %
0	8.4 8.8 9.0	8.7	-
500	9.4 10.6 10.9 9.3	10.1	16. 1

从表 2 中可以看出 . 辐照后 AFRP 的横向拉伸 强度明显提高,提高达16.1%。从横向拉伸断口的 SEM 照片(图 2)可以看出,未处理纤维的 AFRP 断口 存在明显的纤维劈裂现象,微纤化严重[图 2(a)]。 而处理后纤维比较完整,劈裂现象较少[图 2(c)]。 这充分说明经辐照处理后,APMOC 纤维发生了辐照 交联反应,使微纤之间产生了化学键,作用力增强, 纤维本身结构更加紧密,不易微纤化,横向强度便增 大,这是产生横向拉伸强度提高的主要原因。对比 图 2(b) 、(c) 可以看出纤维处理后 AFRP 断面空穴比 未处理的多,说明经辐照交联后,APMOC 纤维本体 横向强度高于界面粘结强度,当受到横向应力时,不 产生本体破坏而是界面破坏。从破坏断口还可以看 出,处理后的纤维有块状树脂粘结,有的相当牢固 [图 2(d)],而未处理纤维没有明显现象。这表明处 理后纤维表面活性增强,与树脂结合良好,提高了界 面强度,这是使横向拉伸强度提高的另一原因。

(a) 辐照前断口的纤维劈裂

(b) 辐照前断口的空穴 宇航材料工艺 2000 年 第 3 期

(d) 辐照后断口的纤维与树脂的粘结

图 2 AFRP 横向拉伸断口形貌

Fig. 2 Fracture sections of the transverse tensile specimens

4 结论

- (1) APMOC 纤维经 射线辐照处理(500 kGy) 后,AFRP 的复丝拉伸强度提高8.2%,横向拉伸强 度提高16.1%。
- (2) 射线处理后,AFRP的拉伸断口形貌发生了明显变化。断口比较齐整,微纤劈裂现象减少。说明辐照使APMOC纤维本身发生了辐照交联反应,微纤之间产生了化学键,增加了分子间作用力。

参考文献

- 1 赵克熙. 原苏联芳纶复合材料进展及固体发动机壳体上的应用. 宇航材料工艺,1995;5:9~13
- 2 Hoffmann L , Penn S et al. Some effects of surface controlled reactions of kevlar on the interface in epoxy composites. Polymer Composite , $1988 : 9 : 184 \sim 191$
- 3 Zhang L H et al. Mechanism of radiation crosslinking of polymers and its relationship with structural multiplicity. Radiat. Phys. Chem. , $1993;42:125 \sim 128$

(上接第13页)

方法将用于未来空间站导管的修理^[4]。美国在 90 年代中期还采用扩散钎焊制造美国国家空天飞机 (NASP)的 SiC/Ti 复合材料外蒙皮。日本也正在采用扩散钎焊制造"HOPE"号航天飞机在 550 以下区域所用钛合金多层壁防热结构。

6 结束语

钎焊技术是一种航天精密构件有效连接技术,可明显减轻航天产品质量,特别适用于液体火箭发动机许多零部件的制造。钎焊技术在国外航天领域已获得广泛应用。我国应重视先进钎焊技术的发展

及其在航天器上的应用,吸收国外先进经验,以减轻航天器构件的质量、改进性能及降低制造成本。

参考文献

- 1~ Heine R W . The Brazing of F 1 and J 2 engine thrust chamber. Western Machinery , 1971 ; (4) : 8 ~ 10
- 2 薛谈之. 涡轮叶冠连续顺序感应钎焊. 宇航材料工艺,1997;(4):60
- 3 Clautice W E. Induction brazing at the kennedy space center. Welding Journal ,1974 ; (10) :613 \sim 622
- 4 Siewert J A et al. The skylab brazing experiment. Welding Journal , 1977 ; (10) :291 \sim 302