摘要
从搅拌摩擦沉积增材(AFSD)成形机制的角度,总结了增材过程中材料温度演变、塑性流动和微观组织变化的研究成果,深入探讨了增材道次和工艺参数对AFSD增材件力学性能的影响,并对国内外AFSD增材工具及装备的研制进展进行了详细介绍,为AFSD的应用前景与发展方向提供了新思路。
搅拌摩擦增材制造是一种基于搅拌摩擦焊(Friction Stir Welding, FSW)原理的增材技术,它利用旋转的自耗型或非自耗型工具摩擦产生热量,使材料发生塑性变形,并逐层堆积增材材料,最终形成增材构件,这项技术有助于避免热变形、气孔和晶粒粗化等问题,提高增材件的质量和性

(a) 搅拌摩擦

(b) 搅拌摩擦沉积

(c) 摩擦堆焊沉积
图1 基于搅拌摩擦的固相增材技术分
Fig.1 Classification of solid phase additive technology based on friction sti
相比FSAM,AFSD技术不需要使材料表面部分熔化与再凝固,因此只需要更低的热输入便能完成增材制造,从而减少了构件的热变形和内部应力,不会出现气孔、裂痕、元素偏析等缺
在搅拌摩擦沉积增材制造中,理解和控制材料的热变形对研究材料成形至关重要。由于在AFSD过程中需要高温和强烈的机械变形,材料会经历复杂的热应力和塑性变形,这直接影响增材件的质量和性能。深入研究材料的热变形行为有助于优化工艺参数,减少缺陷,提高增材件的强度和耐久性,并确保其满足工程应用的要求。
AFSD技术沉积材料位于基材的顶部,而在搅拌摩擦焊接中,搅拌区位于工件材料的内部。因此,AFSD可以使用红外摄像机或高温计等非接触的方法,从侧面直接监测物料流动的表面以及沉积材料的温度。S.K.EVERTON等

(a) AFSD 过程代表性热图像及不同时间步长下搅拌头正下方的温度场

(b) 沉积层某一点温度
图2 Cu在AFSD过程中沉积材料热分
Fig.2 An overview of the thermal profile for Cu deposite
针对试验方法研究AFSD工艺过程温度演化的有限性,研究人员采用不同的方法对沉积增材过程的温度演变进行模拟研究。S.SHARMA等

图3 模拟AFSD过程中的热演
Fig.3 Simulated thermal evolution during AFS
现有研究受限于温度检测技术,对于AFSD增材区温度演化过程的分析相对较为有限,多以仿真为主。后期研究可以探索先进的增材温度实时监测技术,从而能够掌握增材温度演化规律,并实现不同材料的增材温度动态调控。在此基础上,需要对增材区进行更详尽的温度场分布分析,重点研究在搅拌摩擦沉积增材过程中不同区域的温度变化,尤其关注搅拌工具接触区域、材料流动区域以及最终构件表面的温度分布。
相较于温度演化过程,研究AFSD过程中的材料变形过程难度更大,这包括了解材料在高温和高应变条件下的塑性变形、位错运动和晶粒重组。通过深入研究塑性流动,可以更好地掌握材料的形成过程,优化工艺参数,减少残余应力和缺陷,并提高最终增材件的力学性
M.E.J.PERRY等

图4 通过AFSD将2024沉积到6061上的X射线计算机断层扫描结
Fig.4 X-ray computed tomography results for AA 2024 deposited onto AA 6061 via AFS

图5 稳态沉积后的高分辨率X射线计算机层析成像结
Fig.5 High-resolution X-ray computed tomography results after steady-state depositio

图6 Al-Mg-Si和Cu的AFSD过程中变形流动进行比
Fig.6 Acomparison of the deformation flow during AFSD of Al-Mg-Si and C
在增材过程中,材料流动特性与材料性能、搅拌工具的几何形状、增材工艺参数等因素密切相关。这些参数相互耦合,导致材料流动特性难以准确分析。由于材料内部流动无法通过宏观观察分析,只能依赖相关检测仪器和示踪材料进行微观分析。目前的研究局限于特定条件下探讨材料的流动形式,却未深入研究材料流动行为与各个因素之间的关系。后期需要深入探究搅拌工具与材料之间的相互作用,并考虑工艺参数作用下的多物理场耦合效应,以全面理解材料在增材过程中塑性流动的复杂性。
在实验研究的同时,一些学者对AFSD过程中材料的塑性流动进行了数值模拟研究。Y.JIN等
在ASFD工艺中,深入研究材料的微观组织对于优化制造过程参数、提高构件性能以及确保最终制造品质至为关键。O.G.RIVERA等

图7 AA2219沉积前后晶粒尺寸对
Fig.7 Comparison of grain size before and after AA2219 depositio
(a) 原材料 (b) 沉积层
P.AGRAWAL等

图8 4种AFSD沉积样品的反极图和相
Fig.8 Inverse polar and phase diagrams of four AFSD deposited sample
AFSD过程中材料经历了连续的动态再结晶,使得晶粒转化为细小且等轴的晶粒,晶粒尺寸显著变小,同时材料在增材过程中伴随着相转变。然而,当前对于许多材料增材后晶粒细化的程度以及相转变的方式仍难以准确掌握。尤其在制造大型结构件时,长时间的热循环和热累积是否对微观组织的演变产生影响,目前还没有相关研究成果予以证明。因此,这方面的问题仍需进一步深入研究。
作为一种增材制造技术,AFSD技术主要用于大型结构件的制造,因此评估其在工程实践中可行性的关键在于确定增材结构件是否能够满足所需的力学性能标准。这些力学性能标准包括极限抗拉强度、屈服强度、断后伸长率、微观硬度以及疲劳特性
增材道次是AFSD技术中影响增材构件屈服强度、抗拉强度和延展性等力学性能的重要因素之一,确定最佳的增材参数配置,以确保制造的部件在满足工程需求的同时具有最佳的性能和质量。
C.J.T.MASON等

图9 平行道次和单道次沉积AFSD-AA6061准静态应力-应变响应及样品位置示意
Fig.9 Quasi-static stress-strain response and sample position diagram of AFSD-AA6061 deposited in parallel and single passe
此外,不少学者进行了单道多层AFSD实验,研究材料力学性能的变化。H.GHADIMI等人对Al2050铝合金的AFSD过程中沿构建方向的硬度和沿沉积后零件横截面宽度方向顶部硬度变化进行了分析,发现沉积零件的截面显微硬度值在制造方向上逐渐减小。尽管沉积的顶层显微硬度最高,为118HV,但明显低于进给材料的(192HV),见

图10 沉积零件Al2050显微硬度结
Fig.10 Microhardness results of the as-deposited Al2050 par
(a) 构建方向和沉积零件顶部横截面方向的显微硬度测量点 (b) 沉积零件Al2050显微硬度结果(横截面)
分析的原因是零件底部经历了多次热循环,导致沉积区域出现了次生相。在经历了多次热循环后,分散在基体中的合金元素形成了大尺寸的析出物,从而导致零件硬度不均匀。
K.ANDERSON-WEDGE等
当前,已有大量研究关于AFSD技术对材料微观组织和力学性能的影
天津大学固相摩擦焊研究室唐文珅等

图11 不同转速下沉积Al6061的应力-应变曲线及其拉伸性
Fig.11 Stress-strain curves and tensile properties of the as-deposited Al6061 at different rotational speed
上述研究表明,经AFSD制备后构件的力学性能有所下降,主要原因是AFSD过程中产生的热量未达到材料的熔点,但是达到了相转变的温度,强化相溶解导致材料强度硬度均下降,因此增材后的构件需要根据实际生产与使用需求,进行适当的热处理强化,以提高增材件的服役性能。增材道次和工艺参数的改变均会影响材料的力学性能,但目前相关的研究较少,还不能形成系统的理论。未来可将增材实验分析与数值模拟相结合,建立更为准确的增材参数与力学性能关系模型,从而优化增材构件的制造性能。
在AFSD技术中,搅拌工具是其核心技术之一。目前,研究中涉及的搅拌工具主要分为3类:底面平坦搅拌工具、底面两个小突起搅拌工具、“泪滴”状突起搅拌工具,如

图12 搅拌工具主要类
Fig.12 Main types of mixing tool
目前,AFSD增材设备主要用于制造铝合金、镁合金、高熵合金、镍基高温合

图13 MELD公司搅拌摩擦沉积增材设
Fig.13 AFSD machine of MELD corporatio
尽管国内在AFSD领域的起步相对较晚,但随着学术界和研究机构的关注,AFSD设备已经取得了初步的进展。在2022年1月,杨新岐教授领导的天津大学团队成功开发了固相摩擦挤压增材制造技术及相应设

(a) 天津大学AFSD设备

(b) 航天工程装备有限公司AFSD设备
图14 国内搅拌摩擦沉积增材设
Fig.14 Domestic AFSD machin
除了专业设备的开发与研制,不少学者针对搅拌摩擦沉积增材设备也提出了一些想法。万龙等
目前,国内的AFSD装备研究仍处于初步发展阶段,尚无法进行批量生产,大部分专利着眼于在理论条件下实现增材技术,缺乏实际生产现场的操作性。现有的AFSD技术主要基于传统机床的运动控制,因此仅适用于增材制造形状相对简单的构件。此外,为了提高AFSD技术的成形能力和产品质量,有必要开发符合AFSD技术特点的模型处理软件和路径规划软件。这些软件不仅应考虑到AFSD过程的特殊性,还需考虑机加工等后处理需求,从而提高增材件的适用范围。
搅拌摩擦沉积增材技术的研究尚处于初级阶段,研究人员正努力探索该技术在不同制造领域中的潜在应用场景。现阶段,AFSD技术主要应用于大型结构件成形、特征结构增加以及材料修
AFSD技术可用于直接成形大型结构件、复杂几何零件以及定制零件等。MELD公

图15 AFSD技术制备的零
Fig.15 Parts prepared by AFSD technolog
AFSD技术的一个优势是能够连续供应填充材料,这使得它在快速修复等领域具有潜在应用。R.J.GRIFFITHS等
目前AFSD技术已经在航天、航空、船舶、兵器等军工行业得到了初步的应用,未来还有望扩展到医疗、电子、建筑和其他各种工业领域。AFSD能够制造复杂几何形状和多材料组合的零部件,可以根据客户的需求和设计要求生产多品种小批量的产品。同时,未来AFSD的原材料将会有更多种类可供选择,如高温合金、高熵合金和复合材料等,这将扩展AFSD技术的适用范围。此外,AFSD制造过程中可以引入人工智能和大数据分析,以实现对增材过程的监控、维护预测和质量控制,从而提增材件的高制造效率和一致性,减少废弃物和能源消耗,实现更加可持续的制造。总之,AFSD在制造领域有着广泛的前景,随着材料科学、自动化技术和人工智能的不断发展,这项增材技术将持续为各种行业带来更多的创新和效益。
AFSD技术为金属增材制造提供了一种新的加工方式,可用于制造高质量的大型结构件,其细小的等轴组织和优良的力学性能能够与锻造件相媲美。考虑到其独特的优势和目前的研究局限性,目前主要将该工艺应用于零件增材、特征结构增加及修复等领域。在未来的研究和应用中仍然存在一些挑战和问题,主要包括以下几个方面。
(1)AFSD增材成形机理需要更深入地研究,特别是要理解材料变形和流动的物理基础、热生成机制、温度的演变以及与热变形的相互关系。另外,增材后材料晶粒的大小和取向对力学性能和疲劳寿命等方面都有影响,因此在增材过程中有效控制晶粒结构,以及在不同区域和层次上实现晶粒取向控制,从而准确掌握AFSD成形规律。
(2)材料物理力学性能、搅拌工具结构特征、增材工艺参数等不同因素之间的相互耦合效应需要进一步研究,从而更全面地理解它们对增材件最终质量的影响;同时,为确保AFSD的增材性能,需要根据不同的材料确定相应的最佳工艺参数,如搅拌速度、下压速度、行进速度、道间距、层间距等,选择不当的参数可能导致增材件结构不均匀或性能不稳定。
(3)为提高增材过程中的热输入与材料流动特性,可对搅拌工具进行优化设计,在底面采用不同结构的微织构的凸起,改善材料的塑性流动与微观结构;目前AFSD的增材效率较低,需要进一步优化增材设备的进料机构,设计原料连续进给的装置,使增材过程连续化;此外,为了提升增材件性能,可在AFSD装备上建立集成刀库,实现增减材一体制造,以提高构件整体的制造效率与质量。
(4)高熔点材料、复合材料、功能梯度材料等新型材料在AFSD增材制造中的可行性值得深入研究,以推动AFSD技术在各类材料中的广泛应用,而非仅限于轻质合金材料领域。同时基于其固相增材特征,研究AFSD技术在太空微重力、水下真空等复杂环境中的可行性,进一步扩大AFSD技术的应用范围与领域。
(5)AFSD技术可直接在受损或磨损的金属表面进行逐层增材修复,填补损伤或损耗区域,以恢复零部件的原始形状和功能。AFSD技术具有装备简单、工艺流程短等的优势,然而现有的一些研究结果表明AFSD技术的修复质量尚不理想,因此需要从增材机理、工艺控制与修复策略等因素进行综合优化,实现高质量和高灵活度的修复工作。
参考文献
SRIVASTAVA A K, MAURYA N K, MAURYA M, et al. Effect of multiple passes on microstructural and mechanical properties of surface composite Al 2024/SiC produced by friction stir processing [J].Annales de Chimie - Science des Matériaux, 2020, 44(6): 421-6. [百度学术]
GOPAN V, LEO DEV WINS K, SURENDRAN A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes:A review[J].CIRP Journal of Manufacturing Science and Technology, 2021, 32: 228-48. [百度学术]
KHODABAKHSHI F, GERLICH A P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review[J]. Journal of Manufacturing Processes, 2018, 36: 77-92. [百度学术]
MISHRA R S, HARIDAS R S, AGRAWAL P. Friction stir-based additive manufacturing [J]. Science and Technology of Welding and Joining, 2022, 27(3): 141-65. [百度学术]
温琦, 刘景麟, 孟祥晨, 等. 搅拌摩擦增材制造关键技术与装备发展 [J]. 焊接学报, 2022, 43(6): 01-10. [百度学术]
WEN Q,LIU J L,MENG X C,et al. Key technologies and equipment development of friction stir additive manufacturing [J]. Transactions of The China Welding Institution, 2022, 43(6): 01-10. [百度学术]
PALANIVEL S, NELATURU P, GLASS B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J].Materials & Design (1980-2015), 2015,65: 934-52. [百度学术]
PALANIVEL S, SIDHAR H, MISHRA R S. Friction stir additive manufacturing: route to high structural performance [J]. Jom, 2015, 67(3): 616-21. [百度学术]
ZHAO Z, YANG X, LI S, et al. Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy [J].Journal of Manufacturing Processes, 2019, 38: 396-410. [百度学术]
薛凤桐, 刘海滨. 摩擦搅拌增材制造发展概述[J]. 现代制造工程, 2019, (04): 33-40+133. [百度学术]
XUE F T,LIU H B. The overview of friction stir additive manufacturing [J].Modern Manufacturing Engineering, 2019, (04): 33-40+133. [百度学术]
YU H Z,MISHRA R S.Additive friction stir deposition: A deformation processing route to metal additive manufacturing[J]. Materials Research Letters, 2020, 9(2): 71-83. [百度学术]
AVERY D Z, PHILLIPS B J, MASON C J T, et al. Influence of grain refinement and microstructure on fatigue behavior for solid-state additively manufactured Al-Zn-Mg-Cu alloy [J]. Metallurgical and Materials Transactions A, 2020, 51(6): 2778-95. [百度学术]
DILIP J J S, RAFI H K, RAM G D J. A new additive manufacturing process based on friction deposition [J]. Transactions of the Indian Institute of Metals,2011,64(1): 27-30. [百度学术]
DILIP J J S, BABU S, RAJAN S V, et al. Use of friction surfacing for additive manufacturing [J]. Materials and Manufacturing Processes, 2013, 28(2): 189-94. [百度学术]
SHEN J, HANKE S, ROOS A, et al. Fundamental study on additive manufacturing of aluminum alloys by friction surfacing layer deposition[C].Proceedings of the 22nd International Esaform Conference on Material Forming: Esaform 2019. 2019.10.1063/1.5112691 [百度学术]
石磊, 李阳, 肖亦辰, 等. 基于搅拌摩擦的金属固相增材制造研究进展 [J]. 材料工程, 2022,50(01):1-14. [百度学术]
SHI L, LI Y,XIAO Y CH,et al. Research progress of metal solid phase additive manufacturing based on friction stir [J]. Journal of Materials Engineering, 2022,50(01):1-14. [百度学术]
HASSAN A, PEDAPATI S R, AWANG M, et al. A comprehensive review of friction stir additive manufacturing (FSAM) of non-ferrous alloys [J].Materials, 2023,16(7): 2723. [百度学术]
杨坤玉, 袁朝桥, 彭彬, 等. 搅拌摩擦焊近20年研究与发展情况概述 [J]. 焊接, 2020(01): 21-28,66. [百度学术]
YANG K Y,YUAN ZH Q,PENG B,et al. Overview of research and development of friction stir welding in the past 20 years [J]. Welding & Joining, 2020(01): 21-28,66. [百度学术]
EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing [J]. Materials & Design, 2016, 95: 431-45. [百度学术]
GARCIA D, HARTLEY W D, RAUCH H A, et al. In-situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si [J]. Additive Manufacturing, 2020, 34: 101386. [百度学术]
SHARMA S, MANI KRISHNA K V, RADHAKRISHNAN M, et al. A pseudo thermo-mechanical model linking process parameters to microstructural evolution in multilayer additive friction stir deposition of magnesium alloy [J]. Materials & Design, 2022, 224: 111412. [百度学术]
STUBBLEFIELD G G, FRASER K, PHILLIPS B J, et al. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D) [J]. Materials & Design, 2021, 202: 109514. [百度学术]
MORISADA Y,IMAIZUMI T,FUJII H. Determination of strain rate in friction stir welding by three-dimensional visualization of material flow using X-ray radiography[J]. Scripta Materialia, 2015, 106: 57-60. [百度学术]
GOTAWALA N, YU H Z. Material flow path and extreme thermomechanical processing history during additive friction stir deposition [J]. Journal of Manufacturing Processes, 2023, 101: 114-27. [百度学术]
AMBROSIO D, MORISADA Y, USHIODA K, et al. Material flow in friction stir welding: A review [J]. Journal of Materials Processing Technology, 2023, 320: 118116. [百度学术]
PERRY M E J, GRIFFITHS R J, GARCIA D, et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition [J]. Additive Manufacturing, 2020, 35: 101293. [百度学术]
PERRY M E J, RAUCH H A, GRIFFITHS R J, et al. Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition [J]. Materialia, 2021, 18: 101159. [百度学术]
GRIFFITHS R J, GARCIA D, SONG J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages [J]. Materialia, 2021, 15: 100967. [百度学术]
JIN Y, YANG T, WANG T, et al. Behavioral simulations and experimental evaluations of stress induced spatial nonuniformity of dynamic bulk modulus in additive friction stir deposited AA6061 [J]. Journal of Manufacturing Processes, 2023, 94: 454-65. [百度学术]
STUBBLEFIELD G G,FRASER K A,ROBINSON T W, et al. A computational and experimental approach to understanding material flow behavior during additive friction stir deposition (AFSD) [J]. Computational Particle Mechanics, 2023, 10(6): 1629-1643. [百度学术]
RIVERA O G, ALLISON P G, BREWER L N, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition [J]. Materials Science and Engineering: A, 2018, 724: 547-58. [百度学术]
PHILLIPS B J, MASON C J T, BECK S C, et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition [J]. Journal of Materials Processing Technology, 2021, 295: 117169. [百度学术]
AGRAWAL P, HARIDAS R S, AGRAWAL P, et al. Deformation based additive manufacturing of a metastable high entropy alloy via Additive friction stir deposition [J]. Additive Manufacturing, 2022, 60: 103282. [百度学术]
陈刚, 武凯, 孙宇, 等. 搅拌摩擦沉积增材技术研究进展 [J]. 材料工程, 2023, 51(1): 52-63. [百度学术]
CHEN G,WU K,SUN Y,et al. Research progress in additive friction stir deposition [J]. Journal of Materials Engineering, 2023, 51(1): 52-63. [百度学术]
MASON C J T, RODRIGUEZ R I, AVERY D Z, et al. Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminum alloy [J]. Additive Manufacturing, 2021, 40. [百度学术]
ROBINSON T W, WILLIAMS M B, RAO H M, et al. Microstructural and mechanical properties of a solid-state additive manufactured magnesium alloy [J]. Journal of Manufacturing Science and Engineering,2022,144(6): 061013. [百度学术]
GHADIMI H, DING H, EMANET S, et al. Hardness distribution of Al2050 parts fabricated using additive friction stir deposition [J]. Materials, 2023, 16(3): 1278. [百度学术]
ANDERSON-WEDGE K,AVERY D Z, DANIEWICZ S R, et al. Characterization of the fatigue behavior of additive friction stir-deposition AA2219 [J]. International Journal of Fatigue, 2021, 142: 105951. [百度学术]
JOSHI S S, PATIL S M, MAZUMDER S, et al. Additive friction stir deposition of AZ31B magnesium alloy [J]. Journal of Magnesium and Alloys, 2022, 10(9): 2404-2420. [百度学术]
ZENG C,GHADIMI H,DING H,et al. Microstructure evolution of Al6061 alloy made by additive friction stir deposition [J]. Materials, 2022, 15(10): 3676. [百度学术]
WILLIAMS M B, ROBINSON T W, WILLIAMSON C J, et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J].Metals, 2021, 11(11): 1739. [百度学术]
SHEN Z, ZHANG M, LI D, et al. Microstructural characterization and mechanical properties of AlMg alloy fabricated by additive friction stir deposition[J].The International Journal of Advanced Manufacturing Technology, 2023, 125(5-6): 2733-41. [百度学术]
BELADI H, FARABI E, HODGSON P D, et al. Microstructure evolution of 316L stainless steel during solid-state additive friction stir deposition[J].Philosophical Magazine, 2021, 102(7): 618-33. [百度学术]
唐文珅,杨新岐,田超博,等.工艺参数对铝合金摩擦挤压增材组织及性能的影响[J].航空材料学报, 2022,42(1):59-67. [百度学术]
TANG W K,YANG X Q,TIAN C B,et al. Effects of process parameters on microstructure and properties of aluminum alloy fabricated by friction extrusion additive manufacturing[J]. Journal of Aeronautical Materials,2022,42(1):59-67. [百度学术]
CHEN G,WU K, WANG Y,et al.Effect of rotational speed and feed rate on microstructure and mechanical properties of 6061 aluminum alloy manufactured by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4): 1165-76. [百度学术]
AGRAWAL P, HARIDAS R S, YADAV S, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing, 2021, 47: 102259. [百度学术]
BECK S C,RUTHERFORD B A,AVERY D Z, et al. The effect of solutionizing and artificial aging on the microstructure and mechanical properties in solid-state additive manufacturing of precipitation hardened Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 2021, 819: 141351. [百度学术]
LI Y, YANG B, ZHANG M, et al. The corrosion behavior and mechanical properties of 5083 Al-Mg alloy manufactured by additive friction stir deposition[J]. Corrosion Science, 2023, 213: 110972. [百度学术]
PHILLIPS B J,AVERY D Z,LIU T,et al. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si[J]. Materialia, 2019, 7: 100387. [百度学术]
HARTLEY W D, GARCIA D, YODER J K, et al. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition [J]. Journal of Materials Processing Technology, 2021, 291: 117045. [百度学术]
RIVERA O G, ALLISON P G, JORDON J B, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing [J]. Materials Science and Engineering: A, 2017, 694: 1-9. [百度学术]
MELD公司. MELD公司官网[EB/OL]. (2020-4-15) [2023-10-15]. https://www.meldmanufacturing.com/. [百度学术]
MELD Corporation. The official website of MELD corporation [EB/OL]. (2020-4-15) [2023-10-15]. https://www.meldmanufacturing.com/. [百度学术]
南极熊3D打印网. 天津大学成功开发固相摩擦挤压增材制造技术及设备 [EB/OL]. (2022-01-27) [2023-10-15]. http:∥www. nanjixiong. com/thread-152024-1-1. html. [百度学术]
Nan ji Xiong 3D printing network. Tianjin University successfully developed solid-phase friction extrusion additive manufacturing technology and equipment[EB/OL]. (2022-01-27) [2023-10-15]. http:∥www. nanjixiong. com/thread-152024-1-1. html. [百度学术]
航天工程装备(苏州)有限公司. 航天工程装备(苏州)有限公司官网[EB/OL] (2022) [2023-09-25].https://www.aeespace.com/product/18.html. [百度学术]
Aerospace Engineering Equipment (Suzhou) Co.Ltd. The official website of Aerospace Engineering Equipment (Suzhou) Co.Ltd[EB/OL] (2022) [2023-09-25].https://www.aeespace.com/product/18.html. [百度学术]
万龙,高祎晗,温琦.一种多材料搅拌摩擦增材装置:202110184578.7[P]. 2021-06-22. [百度学术]
WAN L,GAO W H,WEN Q. A multi-material friction stir additive device:202110184578.7[P]. 2021-06-22. [百度学术]
黄永宪,谢聿铭,孟祥晨.一种连续进给送料搅拌摩擦增材制造装置及增材制造方法:202110411108.X [P].2021-07-27. [百度学术]
HUANG Y X,XIE Y M,MENG X C. A continuous feeding friction stir additive manufacturing device and additive manufacturing method:202110411108.X [P].2021-07-27. [百度学术]
孟祥晨,陈会子,陈思浩,等.一种异轴增材且同步处理搅拌摩擦增材制造装置及方法: 202210664889.8 [P]. 2022-08-26. [百度学术]
MENG X CH,CHEN H Z,CHEN S H,et al. An off-axis additive and synchronous processing friction stir additive manufacturing device and method:202210664889.8 [P]. 2022-08-26. [百度学术]
王子健,孙舒蕾,肖寒,等. 搅拌摩擦固相沉积增材制造研究现状 [J]. 材料导报, 2024, 38(12): 22100039. [百度学术]
WANG Z J,SUN S L,XIAO H,et al. Research status of additive friction stir deposition[J]. Materials Reports, 2024, 38(12): 22100039. [百度学术]
STUBBLEFIELD G G,WILLIAMS M B,MUNTHER M,et al. Ballistic evaluation of aluminum alloy (AA) 7075 plate repaired by additive friction stir deposition using AA7075 feedstock[J]. Journal of Dynamic Behavior of Materials, 2022, 9(1): 79-89. [百度学术]
MARTIN L P,LUCCITTI A,WALLUK M. Evaluation of additive friction stir deposition of AISI 316L for repairing surface material loss in AISI 4340[J].The International Journal of Advanced Manufacturing Technology, 2022,121(3-4): 2365-2381. [百度学术]
LI B,SHEN Y,LEI L,et al.Fabrication and evaluation of Ti3Alp/Ti6Al4V- surface layer via additive friction-stir processing [J]. Materials and Manufacturing Processes, 2014, 29(4): 412-417. [百度学术]
GRIFFITHS R J, PERRY M E J, SIETINS J M,et al.A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD[J].Journal of Materials Engineering and Performance, 2018, 28(2): 648-656. [百度学术]
GARCIA D, GRIFFITHS R J, YU H Z. Additive friction stir deposition for fabrication of silicon carbide metal matrix composites[Z]. Volume 1: ManufacturingAdditive; Advanced Materials Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation. 2020.10.1115/msec2020-8532 [百度学术]
GRIFFITHS R J, PETERSEN D T, GARCIA D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy [J]. Applied Sciences, 2019, 9(17): 3486. [百度学术]
MARTIN L P, LUCCITTI A, WALLUK M. Repair of aluminum 6061 plate by additive friction stir deposition [J]. The International Journal of Advanced Manufacturing Technology, 2021, 118(3-4): 759-773. [百度学术]
CHOU K,EFF M,COX C D,et al. Optical image and Vickers hardness dataset for repair of 1080 steel using additive friction stir deposition of Aermet 100[J]. Data Brief, 2022, 41: 107862. [百度学术]