摘要
三维纺织复合材料具有优异的力学性能、可设计性强和耐极端环境等优点,在航空航天领域有着广泛应用。为深入了解应用于高温环境中三维纺织复合材料的结构体系和力学行为,本文从三维纺织结构出发,综述了三维纺织复合材料结构类型及其在航空航天领域上的应用;总结了三维纺织复合材料成型工艺和结构特征;分析了三维纺织复合材料热-力学性能的研究进展情况;提出了未来的研究重点和需解决的关键问题,以期为新一代三维纺织复合材料的耐高温/承载设计、制造和应用提供依据。
航空航天用装备部件在服役过程中常处于极端热-力耦合环境中,例如超高速飞行器以高马赫数飞行时,气动加热产生的温度高达1 800 ℃;火箭发动机工作时,燃烧室产生的高速热流冲刷喷管,烧蚀最苛刻的喉衬部位温度可超过2 000 ℃,这对材料的耐高温及承载性能提出了极为严苛的要
本文以三维纺织结构为研究对象,综述三维纺织复合材料结构类型和三维纺织复合材料在航空航天领域的应用;总结三维纺织复合材料工艺方法和结构特征;分析三维纺织复合材料热-力学性能的研究进展情况;提出未来的研究重点和需解决的关键问题,以期为新一代三维纺织复合材料的耐高温/承载设计、制造和应用提供依据。
目前,用于航空航天热端高温部件的三维纺织复合材料结构包括三维机织、三维编织、三维针刺、三维缝合等。各结构下三维纺织复合材料性能、工艺及成本方面各有千秋,其使用需要结合构件服役特

图1 三维纺织复合材料结构及热端部件应用
Fig.1 Three-dimensional textile composite structure and hot end component application
三维纺织复合材料体系可依据基体类型分为三维纺织树脂基复合材料、三维纺织碳基复合材料和三维纺织陶瓷基复合材料,
基体 | ρ/(g·c | E/GPa | σmax/MPa | λ/(W· | 特点 |
---|---|---|---|---|---|
树脂 | 1.2~1.7 | 30~87 | 281~338 | 0.3~1.2 | 易成形、质轻、脆性大 |
碳 | 1.6~1.98 | 50~70 | 98~235 | 34~68 | 耐高温、高强、易氧化 |
陶瓷 | 1.7~2.4 | 111~420 | 198~312 | 11~20 | 耐烧蚀、高强、脆性大 |
模压、缠绕、热压罐以及树脂传递模塑等工艺可以制备三维纺织树脂基复合材料。目前,常用的树脂类型包括环氧、双马来酰亚胺、聚酰亚胺和酚醛等,各类树脂基体热物理性能及特点如

图2 高性能树脂使用温度与韧
Fig.2 Usage temperature and toughness of high-performance resin
三维纺织酚醛基复合材料是烧蚀型的典型代表,其工作原理是利用基体高温烧蚀产生质量损耗,从而带走大量热量。同时,烧蚀后形成的碳保护层也会阻碍热量进入到材料内

图3 酚醛树脂烧蚀机
Fig.3 Ablation mechanism of phenolic resi
三维纺织环氧、双马来酰亚胺和聚酰亚胺基复合材料是非烧蚀型的典型代表。这类树脂玻璃化转变温度较高,且高温下物理化学性质稳定。近年来,学者们主要关注此类三维纺织复合材料基体的增韧和高温力学性能的提升。目前,基体增韧形式主要包括橡胶弹性体增韧、热塑性树脂增韧和纳米粒子增韧

图4 半互穿聚合物网
Fig.4 Semi-interpenetrating polymer network
此外,为进一步扩展三维纺织树脂基复合材料应用场景,解决树脂的耐高温性能有限的问题,通常采用防热层和承载层相结合的方式。将力学性能优异且耐高温的材料置于外层,将耐热性能较差的材料置于内侧,有利于提高三维纺织树脂基复合材料耐高温及承载性
可以看出,改性树脂基体对提高复合材料热-力性能和抗烧蚀性能具有重要作用,但存在操作复杂和改性效果不佳等问题。增强体作为三维纺织树脂基复合材料另一个组成,同样对复合材料的热-力学性能有着重要影响。因此,合理选择三维纺织树脂基复合材料结构或设计其他新型结构,对提高复合材料综合性能、拓展其应用领域,具有重要意义。
三维纺织碳基复合材料一般是以树脂碳、热解碳和沥青碳为基体,并通过化学气相沉积(CVD)、化学气相渗透(CVI)以及先躯体浸渍裂解(PIP)等工艺制备。三维纺织碳/碳(C/C)复合材料是最为常见的碳基复合材料,也是极少数能在2 000 ℃以上环境中使用的结构-功能材
增强体结构直接决定着三维纺织C/C复合材料的力学性能,目前国内已成功研制了二维铺层、三维缝合、三维针刺、三维机织等结构的C/C复合材
基体氧化一直是制约三维纺织C/C复合材料在高温有氧环境服役的关键,通过基体改性技术,可以大幅提高三维纺织C/C复合材料的抗氧化和烧蚀性
涂层改性三维纺织C/C复合材料的抗氧化和抗冲蚀性能一直被认为是最有效的办法,所使用的涂层通常为陶瓷材料。陈波

图5 Hf-C/C复合材料表面烧蚀形貌和温
Fig.5 Surface ablation morphology and temperature of HF-C/C composit
综上,学者们在三维纺织C/C复合材料的预制体结构、碳基体改性和抗氧化涂层等方面进行了大量研究,进一步拓展了三维纺织C/C复合材料在极端环境下的应用潜力。在此基础上,实现三维纺织C/C复合材料多次重复使用,调节其成本和性能之间的关系,以期满足新型航天装备的发展需求。
三维纺织陶瓷基复合材料一般以SiC和SiO2陶瓷材料作为基体,并通过CVI、PIP、溶胶-凝胶法(sol-gel)和溶胶循环浸渍烧结法(SIS)等工艺制备。三维纺织陶瓷基复合材料在高温及烧蚀下仍然能够保持良好的使用性能,常见的三维纺织陶瓷基复合材料主要有C/SiC、SiC/SiC、C/SiO2和SiO2/SiO2
制备工艺决定着基体孔隙以及致密化效果,从而决定陶瓷基三维纺织复合材料的韧性以及耐高温性能。LUO

图6 SiC/SiC复合材料断口形
Fig.6 Fracture morphology of SiC/SiC composite
在基体改性方面,研究者们发现引入玻璃相(BxC、SiBC、SiBCN、含B化合物等)的陶瓷基体会获得自愈效

图7 各玻璃相材料自愈机理和有效工作温度范
Fig.7 Self-healing mechanism and effective operating temperature range of each glass phase materia
纤维和基体之间的界面层起到保护纤维、有效传递载荷和调节纤维与基体之间热应力的作用,是决定三维纺织陶瓷基复合材料强韧性的关键微结构单
增强体结构作为三维纺织陶瓷基复合材料的内部骨架,对复合材料的力学性能具有重大影响。目前来看,二维陶瓷基复合材料在制备周期和成本方面存在着一定的优势,但其整体的力学性能较差;三维纺织陶瓷基复合材料采用一体化成型技术,材料整体性好、可设计性强。赵爽
综上,通过完善基体制备工艺、改性陶瓷基体以及优化界面层的方式,实现了三维纺织陶瓷基复合材料的增韧以及耐高温性能的提升,进一步拓展了其在高温热结构材料方面的应用前景。但由于陶瓷材料存在制备温度高和不易加工等问题,很难制得形状复杂的三维纺织陶瓷基复合材料。此外,三维纺织陶瓷基复合材料较长的制备周期以及高昂的制备成本同样是需要重点解决的问题。
自20世纪起国内外学者便针对室温下三维纺织复合材料的结构参数以及动、静态载荷下的力学性能和典型破坏形式进行了大量的研
三维纺织树脂基复合材料在高温下的力学行为和损伤机理与常温下有很大不同,对其进行高温下的力学实验研究具有重要的实践意义。LI

图8 三维机织碳/环氧复合材料层间剪切损伤形
Fig.8 Morphology of interlaminar shear damage of three-dimensional woven carbon/epoxy composite
在实际应用中,疲劳断裂是工程中最常见和最危险的断裂,对三维纺织树脂基复合材料的抗疲劳性能进行深入研究,以保证其长期使用时的安全性和稳定
综上,三维纺织树脂基复合材料在高温及静态载荷下的疲劳失效分析和损伤机理研究居多,而渐进损伤方面的研究还相对欠缺。因此,搭建高温环境下材料渐进损伤表征平台,厘清三维纺织树脂基复合材料过程失效机理,对提高其安全性能具有重要意义。
针对三维纺织树脂基复合材料高温数值模拟,学者们多利用细观力学方法对代表性体积单元(RVE)进行有限元分析。ZHAO

图9 多尺度框架和不同温度下拉伸和弯曲行为数值模
Fig.9 Numerical simulation of tensile and bending behavior at different temperatures and multiscale framework
综上,有限元方法被广泛用来预测三维纺织树脂基复合材料的高温力学性能。但在模型构建时,通常将纤维束截面假设为圆形、椭圆形和多边形等,在一定程度上忽略了内部纤维束真实分布形态,很难进一步精确预测复合材料破坏及失效演变规律。此外,多尺度分析可以有效得到不同尺度间复合材料损伤和失效行为,但到目前为止,应用多尺度方法分析三维纺织树脂基复合材料在高温下的力学损伤行为的研究还较少。因此,有必要借助计算机断层扫描(Micro-CT)图像技术等,建立精细化多尺度模型,进一步完善其在高温环境下的力学行为分析工作。
三维纺织C/C复合材料力学性能随温度的升高而增强,研究其高温下的损伤机理和失效分析,对其安全服役具有重要意义。在实验研究方面,张波
由于一些C/C复合材料部件,如圆盘和密封圈等,通常用于高速旋转部件和并承受动载荷,因此,研究C/C复合材料的动态力学性能至关重要。LI和JIN

图10 高温动态压缩试验的分离式Hopkinson压杆装
Fig.10 Separate Hopkinson press rod device for high temperature dynamic compression tes
综上,目前学者们对三维纺织C/C复合材料的动、静态力学行为和失效机理进行了大量研究,并且发现高温下增强体和基体界面性能降低及基体损伤是材料失效的主要因素。同三维纺织树脂基复合材料一样,其高温下损伤表征极为困难,尤其是在渐进损伤的表征分析上。因此,有必要将先进表征手段AE(声发射)、DIC(数字图像相关)技术运用到三维纺织C/C复合材料高温力学性能表征上,厘清过程失效机理。
基于不同细观几何结构模型,研究者主要从理论分析方法和有限元方法两方面,对三维纺织C/C复合材料的高温力学行为展开研究。林志远

图11 三维针刺C/C复合材料高温力学性能模
Fig. 11 Simulation of mechanical properties of high-temperature of three-dimensional needled C/C composites
(a)实体梁混合单元;(b)RVE模型;(c)模拟结果。
有限元方法克服了理论预测模型过于简化,适用范围较有限的缺点,已成为三维纺织C/C复合材料力学性能研究的主

图12 三维C/C复合材料多尺度损伤特
Fig.12 Multi-scale damage characteristics of three-dimensional C/C composite
(a)1 300 K纤维和基体纬向损伤变量;(b)1 300 K纤维和基体经向损伤变量;(c)2 500 K下单轴拉伸破坏特征。
综上,三维纺织C/C复合材料对高温有限元分析的研究还较少,大多预测的都是关于热膨胀和热传导性能,且在模型构建时多采用理想模型,忽略了其孔隙特征。因此,如何真实还原三维纺织C/C复合材料细观结构,发展高温环境下三维纺织C/C复合材料的力学行为模拟,进而有效地预测其失效是需要重点研究的方向。
三维纺织陶瓷基复合材料作为高温热结构材料,主要应用于力-热耦合等极端环境。因此,国内外学者关于三维纺织陶瓷基复合材料的研究主要围绕环境因素下的力学性能和破坏机理。谢巍杰

图13 SiC/SiC复合材料高温损伤分
Fig.13 High-temperature damage distribution of SiC/SiC composite
(a) SiC/PyC/SiC;(b) SiC/BN/SiC。
一般来说,温度的升高会削弱复合材料的力学性能,这是由于纤维在热处理后发生损伤以及界面的削弱导致的。但UDAYAKUMAR
由上可知,学者们所关注的问题和研究的热点主要集中在三维纺织陶瓷基复合材料的强度、耐久性等关键力学特征上。但三维纺织陶瓷基复合材料由于制造工艺的不同,复合材料的微观结构(如界面条件)不相同,且随着温度的升高,微观结构也会发生变化,这就导致了三维纺织陶瓷基复合材料断裂强度和断裂机理的差异。因此,需要综合考虑界面和孔隙缺陷下三维纺织陶瓷基复合材料的热机械性能,并进行损伤机理研究,发展相应宏/细/微观力学模型,实现复合材料力学行为预测。
三维纺织陶瓷基复合材料进行高温力学试验技术难度较大,且成本较高,利用理论分析方法对三维纺织陶瓷基复合材料温度相关力学行为进行分析和预测至关重要。然而,适用于高温断裂强度模型的组分材料参数很少,现有的强度模型大多只能在常温下使用。DENG
由于陶瓷材料的脆性较大且对内部缺陷较为敏感,且在高温条件下更容易失效。通过数值模拟预测陶瓷基复合材料在高温下的裂纹扩展过程,有利于评估其在极端环境下的使用寿命,并相应指导陶瓷材料的结构设计。HAN

图14 不同温度下陶瓷材料裂纹扩展模式数值模
Fig.14 Numerical simulation of crack propagation mode of ceramic material at different temperature
综上,当前三维纺织陶瓷基复合材料在高温力学方面的数值模拟研究极少,且基本集中在理论预测上。高温力学有限元分析鲜有报道,这主要是缺乏三维纺织陶瓷基复合材料高温断裂强度模型的材料参数。因此,完善三维纺织陶瓷基复合材料参数体系,建立真实反映三维纺织陶瓷基复合材料结构的高温模型,深化复合材料自身缺陷以及服役载荷下的耦合效应,将有效促进三维纺织陶瓷基复合材料的设计、制造和应用。
三维纺织复合材料因优异的力学性能、丰富的结构设计性和耐极端环境,现已成为航天航空领域部分功能-承载制件的首选材料。近年来,学者们对三维纺织复合材料的热-力学性能研究取得了一些实质性的成果,为该材料在实际中的应用提供了有力支撑。但随着航空事业的飞速发展,三维纺织复合材料将面临着更为苛刻服役环境,这对复合材料的性能、工艺和成本等提出了更高的要求,后续的研究工作还需从以下几方面开展。
(1)三维纺织复合材料结构-功能一体化设计方法。基于数字化驱动,实现三维纺织复合材料制造成形的自动化、大型化和结构多元化,提升三维纺织复合材料在极端环境中应用的可靠性。
(2)服役环境下三维纺织复合材料力学性能及损伤原位表征。针对环境温度、湿度和老化等耦合载荷下,借助Micro-CT、DIC和AE等先进设备,构建损伤量化方法,揭示服役环境下渐进损伤过程,明确失效机理。
(3)三维纺织复合材料多尺度分析方法。收集三维纺织复合材料微细观结构单元及性能数据,完善三维纺织复合材料参数体系。考虑温度、界面、缺陷等耦合下的力学行为,建立真实反映三维纺织复合材料结构的高温模型开展多尺度力学分析。
参考文献
LE V T,HA N S,GOO N S.Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review[J].Composites Part B:Engineering,2021,226:109301. [百度学术]
LI W J, ZHANG Z W, ZHU M D, et al. Novel strategy and multi-scale modelling of integrated multifunctional composite for thermal protection under extreme environment [J]. Applied Thermal Engineering, 2022, 209:118313. [百度学术]
李昱霖,安庆升,杨坤好,等.防热承载一体化复合材料电缆罩分析及验证 [J].空天防御,2019,2(3):1-7. [百度学术]
LI Yulin,AN Qingsheng,YANG Kunhao, et al. Analysis and validation of integrated thermal protection and load bearing for composite material cable cover [J].Air & Space Defense, 2019, 2(3): 1-7. [百度学术]
SONG C Y,FAN W,LIU T,et al.A review on three-dimensional stitched composites and their research perspectives [J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106730. [百度学术]
周世豪, 倪楠楠, 刘彬, 等. 结构热防护一体化复合材料研究进展 [J]. 航空材料学报, 2022, 42(4): 1-15. [百度学术]
ZHOU Shihao,NI Nannan,LIU Bin,et al.Research progress on structural thermal protection integration composite [J]. Journal of Aeronautical Materials, 2022, 42(4): 1-15. [百度学术]
CHEN X M,LI C,ZHANG C Y,et al. Three-dimensional needle-punching for composites-A review [J]. Composites Part A: Applied science and manufacturing, 2016, 85:12-30. [百度学术]
WANG X L,GAO X D,ZHANG Z H,et al.Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace:a focused review [J].Journal of the European Ceramic Society,2021,41(9): 4671-4688. [百度学术]
李军,刘燕峰,倪洪江,等.航空发动机用树脂基复合材料应用进展与发展趋势 [J].材料工程,2022,50(6): 49-60. [百度学术]
LI J,LIU Y F,NI H J,et al.Application progress and development trend of resin matrix composites for aero engine [J].Journal of Materials Engineering,2022,50(6): 49-60. [百度学术]
杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展 [J]. 复合材料学报, 2022, 39(7): 3029-3043. [百度学术]
YANG Z Y,ZHANG D,GU C H, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad [J].Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043. [百度学术]
LI W J, WANG T K, ZHANG Z W, et al. Design of ablation resistant/heat insulation/lightweight integrated thermal protection material for extreme aerothermodynamic environment [J]. Polymer Composites, 2021, 42(12): 6749-6763. [百度学术]
冯志海,师建军,孔磊,等.航天飞行器热防护系统低密度烧蚀防热材料研究进展 [J].材料工程, 2020, 48(8): 14-24. [百度学术]
FENG Z H, SHI J J, KONG L, et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles [J].Journal of Materials Engineering,2020, 48(8): 14-24. [百度学术]
TANG K H, ZHANG A L, GE T J, et al. Research progress on modification of phenolic resin [J]. Materials Today Communications, 2021, 26:101879. [百度学术]
杨滔. 微烧蚀/承载酚醛基复合材料性能研究[D].武汉:武汉理工大学, 2019. [百度学术]
YANG T.Study on Properties of Micro-ablation/bearing Phenolic Matrix Composites [D].Wuhan:Wuhan University of Technology, 2019. [百度学术]
FENG X,SHI Z Z,LIU Y B,et al.Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite [J]. Journal of Materials Science, 2020, 55(20): 8553-63. [百度学术]
高迪. 酚醛树脂浸渍碳纤维三维编织体的成型与烧蚀行为研究 [D].哈尔滨:哈尔滨工业大学, 2011. [百度学术]
GAO D. Reserch on Fabrication and Ablation Behavior of Phenolic Impregnated Three-dimention Carbon Fiber Braid Composites [D].Harbin:Harbin Institute of Technology, 2011. [百度学术]
ZOU Q,XIAO F,GU S Q,et al.Toughening of bismaleimide resin based on the self-assembly of flexible aliphatic side chains [J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16526-16531. [百度学术]
LEE S E, JEONG E, LEE M Y, et al. Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy composites [J].Journal of Industrial and Engineering Chemistry, 2016, 33:73-9. [百度学术]
TARFAOUI M,NACHTANE M.Can a three-dimensional composite really provide better mechanical performance compared to two-dimensional composite under compressive loading?[J].Journal of Reinforced Plastics and Composites, 2019, 38(2): 49-61. [百度学术]
李紫伦, 杨安坤, 覃小红, 等. 三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应[J]. 复合材料学报, 2023,40(10):5588-5600. [百度学术]
LI Z L,YANG A K,QIN X H, et al. Temperature effect on axial compressive properties of three-dimensional glass fiber/epoxy resin braided composite thin-walled tubes[J]. Acta Materiae Compositae Sinica, 2023,40(10):5588-5600. [百度学术]
王颖杰,王海楼,张伟.不同衬经纱占比的三维角联锁机织增强复合材料弯曲性能[J].复合材料学报,2023,40(06):3291-3301. [百度学术]
WANG Y J, WANG H L, ZHANG W. Bending properties of three-dimensional angle interlocking woven reinforced composites with different proportions of warp insertion [J]. Acta Materiae Compositae Sinica,Acta Materiae Compositae Sinica,2023,40(06):3291-3301. [百度学术]
WANG H, QUAN X, Yin L, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J].Composites Part A:Applied Science and Manufacturing, 2022, 159: 107022. [百度学术]
WANG H,PAN Y,JIN X,et al.Gradient fiber-reinforced aerogel composites using surface ceramicizable-resin densification with outstanding ablation resistance for high-temperature thermal protection[J].Composites Science and Technology, 2022, 230: 109798. [百度学术]
王俊山, 徐林, 李炜, 等. 航天领域C/C复合材料研究进展 [J]. 宇航材料工艺, 2022, 52(2): 1-12. [百度学术]
WANG J S,XU L,LI W,et al. Research progress on C/C composites for aerospace applications [J].Aerospace Materials & Technology, 2022, 52(2): 1-12. [百度学术]
YANG W,LUO R Y,HOU Z H,et al. Influence of the microstructure of the carbon matrices on the internal friction behavior of carbon/carbon composites [J].New Carbon Materials, 2016, 31(2): 159-166. [百度学术]
CAI Y Z,CHENG L F,YIN X W,et al. Thermophysical properties of three-dimensional ceramic-filler-modified carbon/carbon composites [J]. Ceramics International, 2019, 45(1): 1302-1307. [百度学术]
曾波. AlSiB-ZrC-C/C 耗散防热复合材料的制备及烧蚀性能研究 [D].哈尔滨:哈尔滨工业大学, 2020. [百度学术]
ZENG B. Preparation and Ablation Properties of AlSiB-ZrC-C/C Dissipative Thermal Protective Composites [D].Harbin:Harbin Institute of Technology, 2020. [百度学术]
陈波. 三维编织C/C复合材料高温力学行为及寿命预测模型研究 [D].南京:南京航空航天大学, 2018. [百度学术]
CHEN B. Research on Mechanical Behavior and Fatigue Prediction Method of 3d Braided Carbon/carbon Composites at Elevated Temperature [D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2018. [百度学术]
XU L, YANG W B, ZHEN F, et al. Fabrication of low-density carbon-bonded carbon fiber composites with an Hf-based coating for high temperature applications [J]. RSC Advances, 2018, 8(34): 19171-19180. [百度学术]
ARAI Y, INNOUE R, GOTO K, et al. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review [J].Ceramics International,2019,45(12):14481-14489. [百度学术]
WANG H, WANG Y, LIN B, et al. What roles do ceramic matrix and woven fibers have in bending strength of SiO2/SiO2 composites:An experimental investigation and acoustic emission analysis[J].Ceramics International,2019,45(1): 1143-1149. [百度学术]
LUO H,LUO R Y,WANG L Y,et al.Effects of fabrication processes on the properties of SiC/SiC composites [J]. Ceramics International, 2021, 47(16): 22669-22676. [百度学术]
赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能 [J]. 材料导报, 2018, 32(16): 2715-2718. [百度学术]
ZHAO S, YANG Z C, ZHOU X G. SiC/SiC composites produced by the combinational process of polymer impregnation & pyrolysis and chemical vapor infiltration: a comparative microstructure and properties study upon 2.5D and 3D braiding structures [J].Materials Reports,2018,32(16): 2715-2718. [百度学术]
ZHANG B,HUANG H,LU X.Fabrication and properties of C/SiO2 composites by silicasol-impregnation sintering process [J]. Journal of Alloys and Compounds, 2019, 789: 357-361. [百度学术]
SONG C K,FANG Y,CHENG L F, et al.Long-term ceramic matrix composite for aeroengine [J].Journal of Advanced Ceramics, 2022, 11(9): 1343-1374. [百度学术]
LAN S, WU D F, PU Y, et al. Experimental research on thermal insulation performance of lightweight ceramic material in oxidation environment up to 1 700 ℃[J].Ceramics International, 2016, 42(2, Part B): 3351-3360. [百度学术]
张翠萍, 茹红强, 朱景辉, 等. 纳米SiC颗粒增强反应结合碳化硼陶瓷复合材料的研究 [J]. 稀有金属材料与工程, 2018, 47(Sup.1): 398-402. [百度学术]
ZHANG C P,RU H Q,ZHU J H, et al. Silicon carbide nano-particulates reinforced reaction bonded boron carbide composites [J].Rare Metal Materials and Engineering, 2018, 47(Sup.1): 398-402. [百度学术]
杨甜甜, 张典堂, 邱海鹏, 等. SiCf/SiC纺织复合材料细观结构及力学性能研究进展 [J]. 航空材料学报, 2020, 40(5): 1-12. [百度学术]
YANG T T, ZHANG D T, QIU H P, et al. Research progress on meso-structure and mechanical properties of SiCf/SiC textile composites [J].Journal of Aeronautical Materials, 2020, 40(5): 1-12. [百度学术]
DONG S M, WANG Z, ZHOU H J, et al. Research progress in SiC-based ceramic matrix composites [J]. Journal of the Korean Ceramic Society, 2012, 49(4): 295-300. [百度学术]
ZHOU Q, DONG S M, ZHANG X Y, et al. Carbon fiber surface coating by forced pressure-pulsed CVI [J]. Journal of Inorganic Materials, 2006, 21(6): 1378-1384. [百度学术]
庞宝琳,焦健,王宇,等.不同界面层体系对SiCf/SiC复合材料性能的影响[J].航空制造技术,2014(6):5,79-82. [百度学术]
PANG B L,JIAO J,WANG Y, et al. Effects of interfacial layers on mechanical properties of SiCf/SiC composites [J].Aeronautical Manufacturing Technology,2014(6):5, 79-82. [百度学术]
段亚弟. 2.5D机织SiCf/SiC复合材料的制备及强韧化机理研究 [D].无锡:江南大学, 2021. [百度学术]
DUAN Y D.Preparation and Strengthening Mechanism of 2.5D Woven SiCf/SiC Composites [D].Wuxi:Jiangnan University, 2021. [百度学术]
关天茹. 2.5D编织石英/SiO2陶瓷基复合材料细观模型构建与实验验证[D].南京: 南京航空航天大学, 2012. [百度学术]
GUAN T R.Micro Geometry and Mechanical Model and Experimental Study of 2.5D Braided Quartz/SiO2 Ceramic Matrix Composites[D].Najing:Nanjing University of Aeronautics and Astronautics, 2012. [百度学术]
蒋丽娟, 侯振华, 周寅智. 三维预制体结构及界面对SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020, 37(3): 642-649. [百度学术]
JIANG L J,HOU Z H, ZHOU Y Z. Effects of three-dimensional prefabricated structure and interface on tensile properties of SiC/SiC composites[J].Acta Materiae Compositae Sinica, 2020, 37(3): 642-649. [百度学术]
WARREN K C, LOPEZANIDO R A, GOERING J. Experimental investigation of three-dimensional woven composites [J].Composites Part A:Applied Science and Manufacturing, 2015, 73:242-259. [百度学术]
LI D S, HAN W F, LEI J. On the tensile properties and failure mechanisms of 3D six-directional braided composites at elevated temperatures [J].Composites Communications, 2021, 28:100884. [百度学术]
DANG M G, LI D S, LEI J. Temperature effects on mechanical response and failure mechanism of 3D angle-interlock woven carbon/epoxy composites [J].Composites Communications, 2020, 18:37-42. [百度学术]
LI D S, YING Y, LEI J. Experimental study on the fabrication, high-temperature properties and failure analysis of 3D seven-directional braided composites under compression [J]. Composite Structures, 2021, 268:113934. [百度学术]
LI J, FAN W, TAO L, et al. The temperature effect on the inter-laminar shear properties and failure mechanism of 3D orthogonal woven composites [J]. Textile Research Journal, 2020, 90(23/24): 2806-2817. [百度学术]
DONOUGH M,GUNNIO A,ORIFICI A,et al. Scaling parameter for fatigue delamination growth in composites under varying load ratios [J].Composites Science and Technology, 2015, 120:39-48. [百度学术]
ZUO H M, LI D S, LEI J, et al. Longitudinal compression fatigue properties of 3D five-directional braided composites at different temperatures [J]. Composite Structures, 2022, 291:115602. [百度学术]
ZUO H M, LI D S, LEI J. Transverse bending fatigue behaviors and failure mechanisms of 3D five-directional braided composites at different temperatures [J]. Materials Letters, 2022, 316:132030. [百度学术]
ZHAO Y R, JIAN S, WEN W D, et al. Thermo-mechanical behaviors of 2.5D shallow straight-link-shaped woven composites under the warp direction fatigue loading at room and elevated temperatures [J].Composite Structures, 2022, 289:115489. [百度学术]
SONG J, WEN W D, CUI H T, et al. Weft direction tension-tension fatigue responses of layer-to-layer 3D angle-interlock woven composites at room and elevated temperatures [J]. International Journal of Fatigue, 2020, 139:105770. [百度学术]
SONG J, ZHANG Y K, WEN W D, et al. Warp and weft direction thermo-mechanical responses of 2.5D shallow straight-link-shaped woven composites at room and elevated temperatures [J].Mechanics of Advanced Materials and Structures, 2022, 29(28): 7672-7689. [百度学术]
WANG H L, SUN B Z, GU B H. Numerical modeling on compressive behaviors of 3D braided composites under high temperatures at microstructure level [J]. Composite Structures, 2017, 16:925-938. [百度学术]
HE C W, GE J R, ZHANG B B, et al. A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature [J]. Composites Science and Technology, 2020, 196:108230. [百度学术]
张波,贺平照,梁建伟,等.针刺C/C复合材料高温剪切强度研究 [J].材料导报,2018,32(Sup.2):5,270-272. [百度学术]
ZHANG B,HE P Z,LIANG J W,et al. Shear strength of needled felt C/C composites in elevated temperature [J]. Materials Reports, 2018, 32(Sup.2):5, 270-272. [百度学术]
LI D S, YAO Q Q, NAN J, et al. Bend properties and failure mechanism of a carbon/carbon composite with a 3D needle-punched preform at room and high temperatures [J]. New Carbon Materials, 2016, 31(4): 437-444. [百度学术]
LI D S, GAN L, YAO Q Q, et al. High temperature compression properties and failure mechanism of 3D needle-punched carbon/carbon composites [J]. Materials Science and Engineering: A, 2015, 621:105-10. [百度学术]
XIE W H, MENG S H, DING L, et al. High velocity impact tests on high temperature carbon-carbon composites [J]. Composites Part B: Engineering, 2016, 98:30-38. [百度学术]
LI D S, DUAN H W, WEI W, et al. Strain rate and temperature effect on mechanical properties and failure of 3D needle-punched carbon/carbon composites under dynamic loading [J]. Composite Structures, 2017, 172:229-241. [百度学术]
JIN X C, CHENG H, LI C L, et al. Strain rate effect on mechanical properties of 3D needle-punched C/C composites at different temperatures [J]. Composites Part B: Engineering, 2019, 160:140-146. [百度学术]
林志远, 邢会华, 侯晓, 等. 针刺C/C复合材料高温力学性能试验及本构关系 [J]. 固体火箭技术, 2019, 42(1): 98-104. [百度学术]
LIN Z Y, XING H H, HOU X, et al. High-temperature mechanical properties testing and constitutive relation of needle-punched C/C composite [J]. Journal of Solid Rocket Technology, 2019, 42(1): 98-104. [百度学术]
HAN M, ZHOU C W, BI Q S. Residual mechanical properties of needle-punched carbon/carbon composites after oxidation [J]. Composites Communications, 2021, 28:100966. [百度学术]
JIAN Y, ZHOU C W, ZHANG H J. A micro-image based reconstructed finite element model of needle-punched C/C composite [J]. Composites Science and Technology, 2017, 153:48-61. [百度学术]
李明旭.针刺碳/碳复合材料超高温拉伸力学性能试验研究 [D].哈尔滨:哈尔滨工业大学, 2020. [百度学术]
LI M X.Experimental Study on Ultra-high Temperature Tensile Mechanical Properties of Needle-punched C/C Composites [D].Harbin:Harbin Institute of Technology, 2020. [百度学术]
AI S G, MA Y W, FANG D N. Multi-scale damage modeling of 3D orthogonal woven carbon-carbon composite at elevated temperatures [J]. Journal of Thermal Stresses, 2019, 42(6): 787-800. [百度学术]
SIDDGONDE N, GHOSH A. Thermo-mechanical modeling of C/C 3D orthogonal and angle interlock woven fabric composites in high temperature environment [J]. Mechanics of Materials, 2020, 148:103525. [百度学术]
谢巍杰, 陈明伟. SiC/SiC复合材料高温力学性能研究 [J]. 人工晶体学报, 2016, 45(6): 1534-1538. [百度学术]
XIE W J,CHEN M W.Study on the high temperature properties of SiC/SiC composites [J].Journal of Synthetic Crystals, 2016, 45(6): 1534-1538. [百度学术]
张宇.2.5D编织陶瓷基复合材料(CMCs)高温力学性能及破坏机制研究[D]南昌:南昌航空大学, 2021. [百度学术]
ZHANG Y. Study on Hgh-temperature Mechanical Properties and Damage Mechanism of 2.5D Woven Ceramic Matrix Composites [D].Nanchang:Nanchang Hangkong University, 2021. [百度学术]
YANG X, QING W, ZHI H P, et al. High-temperature properties of 2.5D SiO2f/SiO2 composites by sol-gel[J]. Ceramics International, 2016, 42(11): 12802-12806. [百度学术]
LI L B, REYNUAD P, FANTOZZI G. Thermal cyclic fatigue damage evolution of fiber-reinforced ceramic-matrix composites under constant loading [J]. Composite Interfaces, 2022, 29(9): 1033-1052. [百度学术]
YANG H T, LU Z L, BIE B X, et al. Microstructure and damage evolution of SiCf/PyC/SiC and SiCf/BN/SiC mini-composites: a synchrotron X-ray computed microtomography study [J]. Ceramics International,2019,45(9):11395-113402. [百度学术]
UDAYAKUMAR A, GANESH A S, RAJIA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI [J]. Journal of the European Ceramic Society, 2011,31(6): 1145-1153. [百度学术]
陈虹, 张联盟, 李勇, 等. 三维编织SiO2基复合材料性能的研究[J]. 硅酸盐学报, 2003, 31(10):918-922. [百度学术]
CHEN H, ZHANG L L, LI Y, et al. Study on the property of three-dimensional SiO2 composites[J]. Journal of the Chinese Ceramic Society, 2003, 31(10):918-922. [百度学术]
DU X B, LI D S, WEI Q H, et al. High temperature bending properties and failure mechanism of 3D needled C/SiC composites up to 2 000 ℃ [J]. Journal of the European Ceramic Society, 2022, 42(6): 3036-3043. [百度学术]
DENG Y,LI W G,WANG R Z,et al. The temperature dependent fracture models for fiber-reinforced ceramic matrix composites [J]. Composite Structures, 2016, 140:534-539. [百度学术]
ZHANG S,FENG Y C, GAO X G, et al. Modeling of fatigue failure for SiC/SiC ceramic matrix composites at elevated temperatures and multi-scale experimental validation [J]. Journal of the European Ceramic Society,2022,42(8): 3395-3403. [百度学术]
LIU Y F, LI L B, ZHANG Z W, et al. Micromechanical modeling cyclic loading/unloading hysteresis loops of 3D needle-punched C/SiC ceramic-matrix composites [J]. Composite Interfaces, 2021,29(10):1121-1144. [百度学术]
王玲玲, 方国东, 梁军. ZrB2基超高温陶瓷复合材料的高温拉伸损伤行为 [J]. 复合材料学报, 2015, 32(1): 125-130. [百度学术]
WANG L L, FANG G D, LIANG J. High temperature tensile damage behavior of ZrB2-based ultra-high temperature ceramic composites [J]. Acta Materiae Compositae Sinica, 2015, 32(1): 125-130. [百度学术]
HAN F S, WU X L, CUI Z I. Numerical simulation of crack propagation in ceramic materials at high temperature[J].IOP Conference Series: Earth and Environmental Science, 2018, 189(3): 032022. [百度学术]
LI D Y, LI W G, WANG R Z, et al. Simulation of the thermal shock behavior of ultra-high temperature ceramics with the consideration of temperature-dependent crack propagation criterion and interaction between thermal shock cracks evolution and thermal conduction [J]. European Journal of Mechanics-A/Solids, 2018, 72, 268-274. [百度学术]