摘要
设计合成了一系列新型高回弹有机硅改性聚酰亚胺泡沫材料(IBPIF-Si),对其泡孔结构、力学性能进行了测试,分析了其发泡原理,探究了材料的最高适用温度。结果表明,相比于纯IBPIF泡沫材料,IBPIF-Si泡沫材料具有低密度[(22.0±6.7)mg/c
随着航天航空的不断发展,聚酰亚胺泡沫材料因其低密度、低导热率、耐高温性受到了研究者的广泛关
针对于此,A.M.XIAN
有机硅聚合物具有独特的半有机半无机高分子骨架、结构中Si—O键能高(460 kJ/mol),因此表现出优异的耐温
3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)、4,4-二氨基二苯醚(ODA):AR,上海麦克林生化科技有限公司(120 ℃真空干燥8 h后使用);氨基封端聚二甲基硅氧烷(HTPS):Mn=850 g/mol,美国Gelest公司;多苯基多亚甲基多异氰酸酯(PAPI):工业级,常州亮宇聚氨酯科技有限公司;聚四氢呋喃醚二醇(PTMG-2000):工业级,济宁宏明化学试剂有限公司;泡沫稳定剂(DC-193):工业级,江苏美思德化学股份有限公司;匀泡剂(DX-9313):工业级,深圳杜道联合化工有限公司;N,N-二甲基甲酰胺(DMF)、甲醇(CH3OH)、三乙胺(TA)、二月桂酸二丁基锡(DBGDL):AR,国药集团有限公司;去离子水:实验室自制。
称一定量ODA、HTPS、DMF于250 mL三口瓶中,搅拌至完全溶解。然后称取计量比的BTDA(二酸酐与二胺的摩尔比为1∶0.75),分批加入三口烧瓶中,充分搅拌5 h后,缓慢升温至60 ℃,待温度稳定后加入3.2 g(0.1 mol)的CH3OH反应1 h,得到一系列PIA均相溶液。
称取上述均相溶液10 g,依次加入0.5 g(5wt%)的PTMG-2000、0.75 g(7.5wt%)的DX-9313、1 g(10wt%)的DC-193、0.5 g(5wt%)的H2O、0.15 g(1.5 wt%)的TA及0.05 g(0.5wt%)的DBTDL,搅拌均匀。然后加入3.16 g的PAPI快速搅拌,待溶液发白后,将溶液倒入模具中进行发泡。当泡沫表面不发黏后,放入鼓风烘箱中熟化,190 ℃保持4 h后得到一系列IBPIF泡沫材料,分别命名为IBPIF、IBPIF-Si-12.5%、IBPIF-Si-25%、IBPIF-Si-37.5%及IBPIF-Si-50%,具体物料配比见
名称 | BTDA /mmol | ODA /mmol | HTPS /mmol | DMF /g | CH3OH /mmol |
---|---|---|---|---|---|
PIA | 90 | 67.5 | - | 182 | 60 |
PIA-Si-12.5% | 90 | 59 | 8 | 182 | 60 |
PIA-Si-25% | 90 | 51 | 17 | 182 | 60 |
PIA-Si-37.5% | 90 | 42 | 25 | 182 | 60 |
PIA-Si-50% | 90 | 34 | 34 | 182 | 60 |

图1 IBPIF泡沫材料的合成路线图
Fig.1 Synthetic routes of IBPIF foams
用傅里叶衰减全反射红外光谱仪(Nicolet670)对IBPIF泡沫材料进行红外测试,图谱扫描范围为4 000~400 c

图2 红外光谱图
Fig.2 Infrared spectrogram of samples
(a) PIA (b) IBPIF
IBPIF-Si泡沫材料的密度(
IBPIF泡沫材料 | 密度 /mg·c | 水接触角 /(°) | 热导率 /mW·(m·K |
---|---|---|---|
IBPIF | 32.1±2.8 | 102.0±2.1 | 10.8 |
IBPIF-Si-12.5% | 23.8±4.4 | 116.8±1.5 | 90.2 |
IBPIF-Si-25% | 23.0±5.3 | 123.4±2.3 | 76.1 |
IBPIF-Si-37.5% | 22.0±6.7 | 125.1±1.5 | 70.9 |
IBPIF-Si-50% | 24.0±5.9 | 128.0±2.7 | 75.4 |

图3 不同IBPIF-Si泡沫材料的SEM图
Fig.3 SEM of different IBPIF-Si foams
IBPIF-Si 泡沫材料 | 孔隙率 /% | 比表面积 / | 平均孔径(4V/A) /μm | 中间孔径 /μm |
---|---|---|---|---|
IBPIF-Si-12.5% | 94.72 | 1.177 | 52.53 | 133.74 |
IBPIF-Si-25% | 90.80 | 2.486 | 39.22 | 67.15 |
IBPIF-Si-37.5% | 97.93 | 2.337 | 42.01 | 43.19 |
IBPIF-Si-50% | 94.31 | 1.541 | 48.79 | 73.95 |

图4 不同IBPIF泡沫材料的TG图
Fig.4 TG of different IBPIF foams
(a) 氮气 (b) 空气

图5 不同IBPIF泡沫材料的压缩图
Fig.5 The compression of different IBPIF-Si foams
(1)在聚酰亚胺前驱体结构中引入硅氧烷链段,后采用液相发泡工艺制备了一系列高回弹有机硅改性聚酰亚胺(IBPIF-Si)泡沫材料。相比于纯IBPIF泡沫材料,由于硅氧烷链段的引入,使得制备的IBPIF-Si泡沫材料具有优异的耐高温性(氮气中T
(2) 随着硅氧烷链段含量的增加,前驱体溶液的表面张力逐渐变小,因交联产生的CO2气体更易稳定,使得IBPIF-Si泡沫材料的孔径逐渐变小、分布更加均匀。这一独特的改性方法提高了聚酰亚胺泡沫材料的柔韧性及疏水性,拓宽了其在航天领域的发展,有望在隔热、降噪、绝缘等方面进一步应用。
参考文献
邓贤辉,夏浩,陈云传,等. 聚酰亚胺泡沫的研究及应用进展[J].中国交黏剂, 2016,25(1):56-60. [百度学术]
ZHENG X H,XIA H, CHEN Y C,et al. Research and application progress of polyimide foam[J].China Adhesives, 2016, 25(1):56-60. [百度学术]
SUGEILY F B , JUAN V M, OSCAR M S, et al. Tortuosity index based on dynamic mechanical properties of polyimide foam for aerospace applications[J].Materials, 2019, 12(11):1851. [百度学术]
GU W H,WANG G H,ZHOU M,et al. Polyimide-based foams: fabrication and multifunctional applications[J]. ACS Appl Mater Interfaces, 2020,12(43):48246-48258. [百度学术]
LIU H T,TIAN H F,YAO Y Y,et al. Polyimide foams with outstanding flame resistance and mechanical properties by the incorporation of noncovalent bond modified graphene oxide[J].New Journal of Chemistry, 2020,44(28):12068-12078. [百度学术]
付攀, 庄洪伟, 李国英, 等. 聚酰亚胺泡沫制备工艺研究[J].山东化工,2017, 46(24):3. [百度学术]
FU P, ZHUANG H W, LI G Y,et al.The production process and preparation of polyimide foam[J].Shandong Chemical Industry, 2017,46(24):3. [百度学术]
LI J W, DING Y Q, YU N, et al.Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance[J]. Carbon, 2020, 158:45-54. [百度学术]
NI L, LUO Y F, PENG X H, et al. Investigation of the properties and structure of semi-rigid closed-cellular polyimide foams with different diamine structures[J].Polymer, 2021, 229:123957. [百度学术]
Liu X Y, ZHAN M S, WANG K. Thermal properties of the polyimide foam prepared from aromatic dianhydride and isocyanate[J].High Performance Polymers,2012,24(5):373-378. [百度学术]
PAN L Y, ZHAN M S, WANG K. Preparation and characterization of high-temperature resistance polyimide foams[J].Polymer Engineering & Science,2010,50(6):1261-1267. [百度学术]
SUN G H,WANG W P,ZHANG C,et al. Fabrication of isocyanate-based polyimide foam by a postgrafting method[J].Journal of Applied Polymer Science,2017,134(14),44240. [百度学术]
TIAN H F, YAO Y Y, LIU W L, et al. Polyethylene glycol: an effective agent for isocyanate-based polyimide foams with enhanced foaming behavior and flexibility[J]. High Performance Polymers,2018,31(7):810-819. [百度学术]
XIANG A,LI Y,FU L W,et al. Thermal degradation and flame retardant properties of isocyanate-based flexible polyimide foams with different isocyanate indices[J]. Thermochimica Acta,2017, 652:160-165. [百度学术]
SUN G,DUAN T,LIU C,et al. Fabrication of flame-retardant and smoke-suppressant isocyanate-based polyimide foam modified by silica aerogel thermal insulation and flame protection layers[J]. Polymer Testing, 2020,91:106738. [百度学术]
董航, 韩苇召,潘云星,等.含碳硼烷耐高温有机硅树脂的合成与表征[J].高分子材料科学与工程,2021,37(4):6. [百度学术]
DONG H,HAN W Z,FAN Y X,et al. Synthesis and characterization of high-temperature-resistant silicone resin containing carborane[J].Polymer materials science & engineering, 2021, 37(4):6. [百度学术]
CHEN Z F, ZHAO W J, XU J H, et al. Designing environmentally benign modified silica resin coatings with biomimetic textures for antibiofouling[J]. RSC Advances, 2015,5:36874-36881. [百度学术]
LI Y, LIU X Y, ZHAN M S, et al.Effects of 3,4′-oxydianiline on the structures and properties of a novel aromatic polyimide foam[J].Journal of Applied Polymer Science, 2012,125(5): 4128-4134. [百度学术]
XU L, JIANG S, LI B, et al. Graphene oxide: A versatile agent for polyimide foams with improved foaming capability and enhanced flexibility[J]. Chemistry of Materials, 2015, 27(12): 4358-436. [百度学术]