摘要
纤维增强SiC陶瓷基复合材料具有密度低、强度高、耐高温、抗氧化、耐腐蚀等优点,在航空航天及其他高温条件使用领域具有广泛的应用潜力。然而难加工特点制约了这类材料的广泛使用。由于存在硬度高、脆性大和各向异性特点,高精度低损伤加工成为其工程应用必须解决的关键技术之一。本文主要综述了近年来纤维增强SiC陶瓷基复合材料加工技术研究进展,综合分析了不同加工方法的加工原理、理论模型构建、工艺参数优化、表面质量控制与损伤形成机制等,讨论了当前存在的主要问题,对未来研究方向提出了发展与展望。
关键词
纤维增强SiC陶瓷基复合材料(Fiber Reinforced SiC Matrix Composites, FRCMC-SiC)是一类以连续纤维为增强体骨架、以SiC陶瓷为基体经过不同工艺方法复合而成的复合材料,按照纤维种类不同可分为C纤维增强SiC基复合材料(Cf/SiC)和SiC纤维增强SiC基复合材料(SiCf/SiC)两种。FRCMC-SiC复合材料综合了连续纤维优良的力学性能和SiC陶瓷良好的物理化学性能,具有密度低、强度高、耐高温、抗氧化、耐腐蚀等优良性能,在航空、航天、能源、交通等领域具有广泛的应用前景,被认为是继C/C复合材料之后发展的又一新型战略性材
FRCMC-SiC复合材料的研究和发展已超过半个多世纪,国外从20世纪70年代后期开始一直致力于该类材料的设计、工艺、考核及应用研究。法国Snecma公司生产的调节片、密封片在700 ℃工作100 h,减重50%,疲劳寿命优于高温合金,已在航空发动机实现装机使用,在超燃冲压发动机燃烧室、进气道前缘、主动冷却面板等方面也开展了大量研究工
国内从20世纪末开始开展FRCMC-SiC复合材料研究,经过近30年的发展,相关科研院所和工业部门在高性能连续纤维研发技术、复合材料制备工艺、界面设计与微结构控制、表面抗氧化技术等方面开展了大量研究工作。西北工业大学多年来一直从事FRCMC-SiC复合材料化学气相浸渗工艺研究,解决了基于增强纤维、界面相、基体与涂层的微结构单元强韧化协同问题,在薄壁结构件的成型和致密化方面具有较为成熟的工艺技
FRCMC-SiC由基体、纤维和界面组成,其中SiC基体或SiC纤维(SiCf/SiC)属于超硬脆性材料,导致材料存在高硬度、大脆性和各向异性特点,使得高精度低损伤加工技术成为这类材料工程应用必须解决的关键技术之一,特别是对于航空航天具有复杂曲面、凹腔、沟槽、孔洞、台阶等结构更是如
纤维增强陶瓷基复合材料的常规机械加工技术主要包括磨削、铣削、车削和钻削等,国内大连理工大学、天津大学、南京航空航天大学、航天材料及工艺研究所、东北大学、华侨大学等单位围绕上述常规机械加工技术开展了系统深入研究,重点主要集中在工艺参数优化、材料去除机理、刀具优选和刀具失效机理等方面。
磨削是纤维增强陶瓷基复合材料构件获得最终加工表面和尺寸精度的常用机械加工工艺,现有研究主要针对复合材料的磨削特性、纤维方向角对材料磨削过程的影响、加工表面质量和磨削去除机制等方面开展。张立峰

图1 不同磨削纤维角时2D Cf/SiC复合材料的加工表面形
Fig.1 Morphology of the ground surfaces after different grinding fiber angles of 2D Cf/SiC composit
在磨削机理方面,单颗磨粒划擦实验是研究磨削机理的主要方法。LI

图2 单颗磨粒切割纤维束的三种模
Fig.2 Three modes of the single-grain cutting into a fiber bundl

(a) 基体塑性断裂

(b) 纤维塑性断裂
图3 锋利金刚石磨粒划擦SiCf/SiC复合材料的表面形
Fig.3 Morphology of SiCf/SiC composite after scribing by sharp diamond gri
为了改善Cf/SiC复合材料的磨削性能,国内外学者将微量润滑(MQL)技术应用到Cf/SiC复合材料的磨削加工中。ADIBI

图4 微量润滑磨削Cf/SiC复合材
Fig.4 MQL grinding of Cf/SiC composit

图5 干磨削、湿磨削和MQL磨削Cf/SiC复合材料的Sa对
Fig.5 Surface roughness of the Cf/SiC composite under dry, wet and MQL grindin
孔加工是航空航天领域高端装备制造装配过程中极为重要的工艺组成部分,即使纤维增强陶瓷基复合材料结构件可以使用近净成形以减少材料的二次加工,但是近净成形工艺难以获得高质量孔,不可避免要使用制孔工艺。航空航天装备中装配孔的数量巨大,对高效制孔提出了迫切需求。纤维增强陶瓷基复合材料结构件连接装配后,通常无法采用二次复合工艺消除连接间隙和材料缺陷,因此高精度高质量制孔成为保障装配可靠性的关键。国内外学者针对纤维增强陶瓷基复合材料的制孔工艺建模、参数优化、材料去除机理等方面开展了大量研究。
毕铭

图6 未使用和使用石墨支撑层进行钻孔的装夹示意
Fig.6 Drilling types with and without supported graphite plat
由于纤维增强陶瓷基复合材料具有高硬度、各向异性和非均质性等特性,其钻削过程中钻削力呈现不对称性,容易导致钻头偏斜甚至折断。DIAZ

图7 复合材料不同部位处钻头所受径向力示意
Fig.7 Radial forces on the drill bit at different parts of the composit
螺旋铣削(Helical Milling)制孔,也称为行星钻(Orbital Drilling)是使用高速旋转的立铣刀沿着螺旋线轨迹进给,从而在工件上铣削出直径大于立铣刀直径的圆孔的新工艺。该工艺中立铣刀沿螺旋轨迹进给,将工件材料逐层铣削去除,因此比常规钻削工艺的轴向力低,出口毛刺少;由于加工孔的直径比刀具直径大,切削区域不封闭,散热条件好,易于排屑,因此比常规钻削的切削温度低,且一把刀具可以加工多种规格的孔。张瑾瑜

图8 Cf/SiC复合材料钻孔和螺旋铣孔的出入口质
Fig. 8 Hole qualities of Cf/SiC composite obtained with drilling and helical milling processe
磨削加工虽然可获得较高的加工表面质量和精度,但其加工效率依然较低,当材料去除量较大时,使用铣削刀具加工纤维增强陶瓷基复合材料可大幅度提高加工效率。现有研究结果表明,金刚石刀具是加工陶瓷基复合材料的理想刀具,使用金刚石刀具可获得较高的使用寿命和良好的加工表面质
现有针对纤维增强陶瓷基复合材料铣削加工的研究大多集中在工艺参数对切削力和加工质量的影响,并对工艺参数进行优化,而忽略了切削温度的研究。复合材料对加工冷却条件要求苛刻,若使用切削液来降低切削温度,则切削液会渗入材料固有的孔洞中,在刀具的挤压作用下,孔洞内的切削液会导致裂纹萌生并向材料内部扩展,造成严重的亚表层损伤。因此,复合材料必须在干切削或近干式切削条件下加工,由于复合材料的高硬度和强耐磨性,切削温度高,不仅导致刀具磨损速率快,而且降低了加工质量。徐亮

(a) 低温加工装置

(b) 不同介质下的切削温度

(c) 不同介质下的切削力

(d) 干切削的加工表面损伤

(e) 不同介质下的刀具磨损规律
图9 Cf/SiC复合材料加工试验结
Fig.9 Machined experimental results of Cf/SiC composit
刀具被誉为工业的“牙齿”,在纤维增强陶瓷基复合材料的常规机械加工中,刀具材料和结构对于加工效率、加工质量具有重要影响。刀具材料方面,王平
刀具结构研究方面,陈杰
另外,LACALLE
特种加工技术也称为“非传统加工技术”(Non-Traditional Machining, NTM),指利用热能、电能、光能、化学能等能量达到去除或增加材料的加工方法。纤维增强陶瓷基复合材料的特种加工技术主要包括激光加工、电火花加工、水射流加工等,国内西北工业大学、西安交通大学、山东大学、哈尔滨工业大学、中航工业复合材料技术中心等单位围绕特种加工工艺、能量对材料的作用机理、工艺参数优化和加工质量等开展了大量研究工作。
激光加工是利用高能量密度的激光束使工件材料去除、变形、改性、沉积或连接等的加工技术。激光能量作用集中、效率高、可控性高,且激光加工属于非接触加工,不产生机械应力,不存在刀具磨损和替换等问题,适合加工如纤维增强陶瓷基复合材料等的高硬度、高脆性材料。目前激光加工纤维增强陶瓷基复合材料的研究主要集中在激光的选择、加工工艺、加工参数优化和材料去除机理等方面。
激光包括脉冲激光和连续激光两类,其中脉冲激光如纳秒、皮秒和飞秒激光等的单脉冲能量很高,可以在极短时间内使作用区域的工件材料温度上升到材料的熔点或升华温度,从而达到去除或改性材料的目的。ZHANG和LIU
激光加工中,经透镜透射后的激光束呈锥形,因此激光钻孔或激光切割的材料截面也呈现锥形,当孔深增大或板材厚度增加时,加工精度越低。刘壮

图10 激光环钻制孔的锥度和热影响
Fig.10 Taper and HAZ of the holes machined with laser trepan drillin
ZHAI

图11 飞秒激光加工SiCf/SiC复合材料机理和试验观
Fig.11 Mechanisms and experimental observations of pico-second laser machining of SiCf/SiC composit
电火花加工技术(EDM)是通过工件电极和工具电极之间脉冲性火花放电时的电腐蚀来去除材料,以达到对工件尺寸、形状和表面质量要求的加工技术。
C纤维和SiC均为导电材料,YUE和ZHANG
由于纤维增强陶瓷基复合材料的导电率较低,且电火花加工过程中碎屑排出效率低,导致材料去除率较低。为了解决上述问题,WEI
磨料水射流加工是以水为介质,通过高压发生装置获得较大能量,通过供料和混合装置将磨料加入到高压水射流中,形成固液两相混合射流,依靠磨料和高压水射流的高速冲击和冲刷,材料局部应力集中,从而产生冲蚀、剪切,实现材料去除的特种加工方法。磨料水射流加工工艺具有较强的切割加工能力,且对工件材料的厚度几乎没有限制;该工艺产热少,且高速高压水射流可时时带走加工产生的热量,加工几乎没有热损伤;该工艺还具有清洁环保的优点。
焦健
复合加工一般定义为在传统加工工艺中同时使用另外一种或多种形式的能量以实现材料去除的加工技术,如使用热能(激光加热)或动能(超声振动
国内外学者针对纤维增强陶瓷基复合材料的复合加工技术开展了大量的理论分析、有限元仿真和试验研究,主要包括超声振动辅助加工、激光辅助加工、电火花和超声复合加工、水射流和激光复合加工等。研究结果均表明,相对于单个加工工艺,复合材料的复合加工中切削力和刀具磨损降低,材料的加工性和加工表面质量得到提高。
超声振动辅助加工(UVAM)是一种综合了传统机械加工和超声波技术的新型复合加工技术,是在刀具或工件上施加可控的高频振动,改变刀具与工件之间的接触和作用状态,使刀具与工件发生周期性的接触和分离。国内北京航空航天大学、南京航空航天大学、天津大学、大连理工大学等单位针对纤维增强陶瓷基复合材料的超声振动辅助加工技术开展了大量研究,研究结果表明超声振动辅助加工纤维增强陶瓷基复合材料可有效降低切削力,降低刀具与切削间的摩擦因数,提高加工效率、加工表面质量和刀具寿命。国内外学者围绕纤维增强陶瓷基复合材料的超声振动加工,设计搭建了超声振动装
LIU
WANG
旋转超声振动加工(RUM)在旋转刀具的轴向施加超声振动,即超声振动方向与切削速度方向垂直。DING

(a) RUM加工原理示意图

(b) 加工结果对比
图12 旋转超声振动辅助钻
Fig.12 Schematic diagram and experimental results of rotary ultrasonic machinin
超声扭转振动(UTV)加工是在刀具绕主轴转动的同时对刀具的主运动方向施加超声振动,即超声振动方向与切削速度方向相同。姜庆
综上所述,与常规切削相比,超声辅助作用降低了切削力和刀具磨损,提高了加工表面质量,同时可以提高材料的疲劳性能。但针对超声振动辅助加工纤维增强陶瓷基复合材料的作用机理,目前尚无统一定论。ZHANG
激光辅助加工(LAM)是利用激光的热效应软化待加工区域材料,在材料软化状态下使用刀具将其去除,从而降低了切削力,提高了材料的切削加工性。目前国内未见关于激光加热辅助加工在纤维增强SiC陶瓷基复合材料领域的研究报道。ROZZI

图13 激光辅助加工原理示意
Fig.13 Schematic diagram of laser assisted machinin
ERDENECHIMEG
XU
由上述研究可知,在激光加热辅助作用下,复合材料的切削力得到显著降低,进而刀具磨损和加工缺陷降低。但是,纤维增强陶瓷基复合材料的熔点高、硬度高,材料软化、熔化甚至气化所需的温度很高,现有研究中激光加热温度均高于1 000 ℃。一方面激光热影响区较大,材料的物理力学性能发生改变,后续仍要将热影响区材料去除方可获得所需表面;另一方面,高温会降低刀具的切削性能,尤其针对金刚石刀具或金刚石涂层刀具,高温将导致金刚石发生石墨化。WANG
激光水射流加工(LWJM)是通过专用装置将激光束完全包含在水射流中,激光在水射流和空气界面处发生反射,沿着水射流路径传播,最终作用到工件表面(

图14 激光水射流加工原理示意
Fig.14 Schematic diagram of laser water jet machinin
徐俊

图15 水导激光加工SiCf/SiC复合材料的断口形
Fig.15 Sectional morphology of the SiCf/SiC composite machined with water jet guided laser machinin

图16 LWJ加工和CGALWJ加工效果对比示意
Fig.16 Schematic diagrams of LWJ machining and CGALWJ machinin
FRCMC-SiC复合材料具有优异的物理和化学性能,在航空航天、轨道交通、核工业和高性能光学系统等领域具有广泛应用前景。该类复合材料普遍采用近净成形的制备方法,但是为了保证复合材料构件的使役性能、安全性和可靠性,一般需要对制备后的材料进行机械加工以获得较高的尺寸精度、形位精度和表面质量。复合材料具有高硬度、大脆性、各向异性和非均质性等特点,是一种典型的难加工材料,给机械加工带来了挑战。国内外学者围绕Cf/SiC和SiCf/SiC复合材料的常规机械加工、特种加工和复合加工工艺进行了较为系统的研究。
在常规机械加工技术中,磨削加工可获得较高的表面质量和加工精度,但是其材料去除效率普遍较低(<1 c
在特种加工技术中,激光加工的研究最多,工艺主要集中在激光制孔和激光加工表面微结构。激光能量作用集中,易于调控,尤其是脉冲激光的能量密度很高,可在极短时间内将作用区域材料熔融或气化,因此激光加工的材料去除率较高。但激光加工复合材料的表面质量和形状精度较差,飞溅出来的熔渣会附着在材料表面,降低了表面质量;激光加工存在热影响区,改变了材料的物理化学性能。激光束呈锥形结构,加工的结构形状也存在锥度,加工精度较低。
在复合加工技术中,超声振动辅助加工具有较低切削力和切削温度、较高加工质量,还可有效抑制毛刺、撕裂等加工缺陷,成为复合材料加工研究的热点。但是受到超声临界速度的限制,其提高加工效率的能力仍然有限。激光加热辅助加工虽可克服复合材料高硬度带来的高切削力难题,但是复合材料软化所需的激光能量很高,激光热影响区较大,工艺可控性差。同时,高温会降低刀具的切削性能,降低加工精度。
现有研究在加工工艺、刀具优选、工艺参数优化和表面形成机制等方面取得了一些有意义的结果,证明通过合理的工艺控制可以解决复合材料加工的部分难题,但仍不能获得高效、精密和无损伤加工。随着FRCMC-SiC复合材料应用领域的逐步扩大和复合材料结构件性能的逐渐提高,对复合材料高效精密加工的需求日益迫切。根据本文的综述分析,后续FRCMC-SiC复合材料的加工研究可从以下几个方面开展:
(1)加工刀具方面,缺乏基于刀具和复合材料切削特性匹配性的专用金刚石刀具技术。目前研究表明金刚石刀具是加工纤维增强陶瓷基复合材料的理想刀具,但相关研究仍然停留在针对现有金刚石刀具进行选型并开展切削试验,而缺乏金刚石刀具材料与结构对复合材料切削特性的影响规律的研究,复合材料加工专用刀具的设计与制备缺乏理论指导;
(2)质量表征方面,由于复合材料的各向异性和非均质性,FRCMC-SiC的加工表面及亚表面微观组织和损伤形式等与金属材料不同,因此金属材料加工质量表征方法不完全适用于陶瓷基复合材料,需要开发FRCMC-SiC复合材料特定的加工质量表征技术;
(3)加工质量与材料使役性能的映射关系尚不明确,现有研究重点关注加工工艺参数对加工质量的影响规律,而缺乏加工质量对材料使役性能如承载、抗氧化、疲劳、蠕变等影响,需要加强加工工艺与全寿命周期使用可靠性、性能寿命等关联关系研究。
参考文献
张立同,成来飞,徐永东.新型SiC陶瓷基复合材料的研究进展[J].航空制造技术,2003(1):24-32. [百度学术]
ZHANG L T,CHENG L F,XU Y D.Progress in research work of new CMC-SiC[J].Aeronautical Manufacturing Technology,2003(1):24-32. [百度学术]
何新波, 杨辉, 张长瑞, 等. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程, 2002,20(2): 273-278. [百度学术]
HE X B, YANG H, ZHANG C R, et al. Review of continuous fiber reinforced ceramic matrix composites[J].Materials Science & Engineering,2002,20(2):273-278. [百度学术]
JAMES A D.Advances in SiC/SiC composites for aero-propulsion [R]. NASA/TM-2013-217889, 2013. [百度学术]
BOUQUET C, FISHCHER R, LARRIEU J M, et al. Composite technologies development status for scramjet applications[C].12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk,VA,15-19, 2003. [百度学术]
张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007,24(2): 1-6. [百度学术]
ZHANG L T,CHENG L F.Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites [J].Acta Materiae Compositae Sinica,2007,24(2):1-6. [百度学术]
LARRY D H,CRAIG A S.The X-37 hot structure control surface testing[R].NASA 20060056099, 2006. [百度学术]
VALENTINE P G.Hot structure control surface progress for X-37 technology development program[R].NASA 20040086536, 2004. [百度学术]
TUMINO G,ANGELINO E,LELEU F.The IXV project-the ESA re-entry system and technologies demonstrator paving the way to European autonomous space transportation and exploration endeavours [R]. IAC-08-D2.6.01, 2008. [百度学术]
康开华, 才满瑞. 欧洲过渡性实验飞行器项目[J].导弹与航天运载技术,2012(4): 58-62. [百度学术]
KANG K H,CAI M R.European intermediate experimental vehicle project [J].Missiles and Space Vehicles,2012(4):58-62. [百度学术]
李文杰,牛文. IXV再入飞行器完成降落着陆试验[J].飞航导弹, 2014(1):18-19. [百度学术]
LI W J,NIU W.IXV has completed the landing test[J]. Aerodynamic Missile Journal, 2014(1):18-19. [百度学术]
CHENG L F,XU Y D,ZHANG L T,et al.Oxidation behavior from room temperature to 1 500 ℃ of 3D-C/SiC composites with different coatings [J]. Journal of the American Ceramic Society, 2002,85(4): 989-991. [百度学术]
马登浩, 侯振华, 李军平, 等. 界面相对3D-SiC/SiC 复合材料静态力学性能及内耗特征的影响[J]. 无机材料学报, 2021,36(1): 55-60. [百度学术]
MA D H,HOU Z H,LI J P,et al.Interface type on the static mechanical properties and internal friction of 3D-SiC/SiC composites [J].Journal of Inorganic Materials,2021,36(1):55-60. [百度学术]
陈明伟,谢巍杰,邱海鹏.连续SiC纤维增强SiC陶瓷基复合材料研究进展[J].现代技术瓷,2016,37(6): 393-402. [百度学术]
CHEN M W XIE W J,QIU H P.Recent progress in continuous SiC fiber reinforced SiC ceramic matrix composites [J].Advanced Ceramics,2016,37(6):393-402. [百度学术]
焦健,陈明伟.新一代发动机高温材料—陶瓷基复合材料的制备、性能及应用[J].先进高温材料,2014(7):62-69. [百度学术]
JIAO J,CHEN W M.New generation of high-temperature material for engine-preparation,property and application of ceramic matrix composites[J].Advanced High-temperature material,2014(7):62-69. [百度学术]
MAO W G,CHEN J,SI M S,et al.High temperature digital image correlation evaluation of in-situ failure mechanism: An experiment alframe work with application to C/SiC composites [J]. Materials Science & Engineering A, 2016, 665:26-34. [百度学术]
DIAZ O G,LUNA G G,LIAO Z R,et al.The new challenges of machining ceramic matrix composites (CMCs): Review of surface integrity [J]. International Journal of Machine Tools and Manufacture, 2019, 139: 24-36. [百度学术]
KLOCKE F,SOO S L,KARPUSCHEWSKI B,et al.Abrasive machining of advanced aerospace alloys and composites [J].CIRP Annals-Manufacturing Technology,2015,64(2): 581-604. [百度学术]
张立峰,王盛,李战,等.纤维方向对单向C/SiC复合材料磨削加工性能的影响 [J].中国机械工程,2020,31(3): 373-377. [百度学术]
ZHANG L F,WANG S,LI Z,et al.Effects of fiber direction on grinding performance for unidirectional C/SiC composites [J]. China Mechanical Engineering, 2020, 31(3): 373-377. [百度学术]
张立峰,王盛,乔伟林,等.单向复合材料C/SiC平面磨削力实验研究 [J].硅酸盐通报,2019,38(4):1155-1159. [百度学术]
ZHANG L F,WANG S,QIAO W L,et al.Experimental study on surface grinding force of unidirectional C/SiC composites [J].Bulletin of the Chinese Ceramic Society,2019, 38(4):1155-1159. [百度学术]
ZHANG L F,WANG S,LI Z,et al.Influence factors on grinding force in surface grinding of unidirectional C/SiC composites [J].Applied Composite Materials,2019,26(3):1073-1085. [百度学术]
张立峰,王盛,李战,等.单向复合材料C/SiC纳米刻划实验研究 [J].热加工工艺,2019,48(4):117-120. [百度学术]
ZHANG L F,WANG S,LI Z,et al.Experimental study on nanoscratch of unidirectional C/SiC composites[J].Hot Working Technology, 2019, 48(4): 117-120. [百度学术]
王涛,王盛,乔伟林,等.单向C/SiC复合材料平面磨削的磨削力模型研究[J].中国机械工程,2019,30(17): 2017-2021. [百度学术]
WANG T,WANG S,QIAO W L,et al.Research on grinding force model of plane grinding for unidirectional C/SiC composites [J].China Mechanical Engineering,2019,30(17):2017-2021. [百度学术]
CAO X Y,LIN B,ZHANG X F.Investigations on Grinding process of woven ceramic matrix composite based on reinforced fiber orientations[J].Composites:Part B: Engineering,2015,71:184-192. [百度学术]
TAWAKOLI T,AZARHOUSHANG B.Intermittent grinding of ceramic matrix composites (CMCs) utilizing A developed segmented wheel[J].International Journal of Machine Tools & Manufacture,2011,51:112-119. [百度学术]
LIU Q,HUANG G Q,FANG C F,et al.Experimental Investigations on grinding characteristics and removal mechanisms of 2D-Cf/C-SiC composites based on reinforced fiber orientations[J].Ceramics International,2017,43(17):15266-15274. [百度学术]
LIU Q,HUANG G QXU X P,et al.Influence of grinding fiber angles on grinding of the 2D-Cf/C-SiC composites [J]. Ceramics International, 2018, 44(11): 12774-12782. [百度学术]
LIU Q,HUANG G Q,CUI C C,et al.Investigation of grinding mechanism of A 2D Cf/C-SiC composite by single grain scratching [J].Ceramics International,2019,45(10):13422-13430. [百度学术]
LI Y C,GE X,WANG H,et al.Study of material removal mechanisms in grinding of C/SiC composites via single-abrasive scratch tests [J].Ceramics International,2019,45(4):4729-4738. [百度学术]
YIN J F,XU J H,DING W F,et al.Effects of grinding speed on the material removal mechanism in single grain grinding of SiCf/SiC ceramic matrix composite[J].Ceramics International, 2021,47(9):12795-12802. [百度学术]
LIU Y,QUAN Y,WU C J,et al.Single diamond scribing of SiCf/SiC composite: force and material removal mechanism study [J].Ceramics International,2021,47(19): 27702-27709. [百度学术]
ADIBI H,ESMAEILI H,REZAEI S M.Study on minimum quantity lubrication (MQL) in grinding of carbon fiber-reinforced SiC matrix composites (CMCs)[J].The International Journal of Advanced Manufacturing Technology,2018,95(9-12):3753-3767. [百度学术]
QU S S,GONG Y D,YANG Y Y,et al.Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding [J].Ceramics International,2020,46(3):3582-3591. [百度学术]
QU S S,GONG Y D,YANG Y Y,et al.An Investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fiber-reinforced ceramic matrix composites[J] Journal of Cleaner Production,2020, 249: 119353. [百度学术]
毕铭智.C/SiC复合材料钻、铣加工技术的试验研究 [D].大连:大连理工大学, 2013. [百度学术]
BI M Z. Experimental research on drilling and milling of C/SiC composites[D].Dalian:Dalian University of Technology,2013. [百度学术]
张国栋, 邓建新, 张克栋, 等. C/C-SiC复合材料钻削加工工艺研究 [J]. 工具技术, 2014, 48(9): 12-16. [百度学术]
ZHANG G D, DENG J X, ZHANG K D, et al. Study of technique in drilling C/C-SiC composites [J].Tool Engineering, 2014,48(9):12-16. [百度学术]
XING Y Q,DENG J X,ZHANG G D,et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills [J].Journal of Manufacturing Processes,2017, 26:31-43. [百度学术]
DIAZ O G,AXINTE D A, NOVOVIC D. Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials:A case study in ceramic matrix composites (CMCs) [J]. Composites Part B: Engineering, 2018, 148: 217-226. [百度学术]
DIAZ O G,AXINTE D A,SMITH P B, et al. On understanding the microstructure of SiC/SiC ceramic matrix composites (CMCs) after A material removal process [J]. Materials Science & Engineering A, 2019, 743: 1-11. [百度学术]
张瑾瑜, 王宁, 赵建设, 等. C/SiC复合材料螺旋铣削与钻削制孔效果对比 [J]. 宇航材料工艺, 2020, 50(5): 39-40. [百度学术]
ZHANG J Y, WANG N, ZHAO J S, et al. Comparison between helical milling and drilling of C/SiC composite materials [J]. Aerospace Materials & Technology, 2020,50(5):39-40. [百度学术]
王平, 张权明, 李良. Cf/SiC陶瓷基复合材料车削加工工艺研究 [J]. 火箭推进, 2011, 37(2): 67-70. [百度学术]
WANG P,ZHANG Q M,LI L.Research on turning technology of Cf/SiC ceramic matrix composites [J].Journal of Rocket Propulsion, 2011, 37(2): 67-70. [百度学术]
QU S S,GONG Y D,YANG Y Y,et al.Mechanical model and removal mechanism of unidirectional carbon fiber-reinforced ceramic composites [J].International Journal of Mechanical Sciences, 2020, 173: 105465. [百度学术]
CHEN J,AN Q L,MING W W,et al. Hole exit quality and machined surface integrity of 2D Cf/SiC composites drilled by PCD tools [J]. Journal of the European Ceramic Society, 2019, 39(14): 4000-4010. [百度学术]
DING K, FU Y C, SU H H, et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J].The International Journal of Advance Manufacturing Technology, 2017, 91(9-12): 3095-3105. [百度学术]
李巾锭, 任成祖, 吕哲, 等. 单颗粒金刚石平面磨削C/SiC复合材料的有限元仿真 [J]. 材料科学与工程学报, 2014, 32(5): 686-689,715. [百度学术]
LI J D,REN C Z,LV Z,et al.Finite element simulation of single diamond abrasive surface grinding C/SiC[J].Journal of Materials Science & Engineering,2014,32(5):686-689,715. [百度学术]
王明海,姜庆杰,王奔,等.C/SiC复合材料超声扭转振动铣削抑制损伤产生的机理[J].现代制造工程,2016(3): 103-109. [百度学术]
WANG M H, JIANG Q J, WANG B, et al. Mechanism of reduction of damage during ultrasonic torsional vibration milling of C/SiC composites [J].Modern Manufacturing Engineering, 2016(3): 103-109. [百度学术]
HU M, MING W W, AN Q L, et al. Experimental study on milling performance of 2D C/SiC composites using polycrystalline diamond tools[J].Ceramics International,2019, 45(8):10581-10588. [百度学术]
何涛,傅玉灿,苏宏华,等.C/SiC复合材料铣削表面完整性研究[J].南京航空航天大学学报,2014,46(5):710-706. [百度学术]
HE T,FU Y C,SU H H,et al.Study on surface integrity in millling of C/SiC composites [J].Journal of Nanjing University of Aeronautics & Astronautics,2014, 46(5): 710-706. [百度学术]
XU L,ZHAO G L,ZHANG J Q,et al.Feasibility study on cryogenic milling of carbon fiber reinforced silicon carbide composites [J].Transactions of Nanjing University of Aeronautics and Astronautics, 2020,37(3): 424-433. [百度学术]
王凯,徐亮,王新永,等.聚晶金刚石刀具低温冷却铣削Cf/SiC磨损机理 [J].科学技术与工程,2021,21(26):11125-11129. [百度学术]
WANG K, XU L,WANG X Y, et al. Wear mechanism of polycrystalline diamond tool in cryogenic cooling milling of Cf/SiC composite [J]. Science Technology and Engineering, 2021, 21(26): 11125-11129. [百度学术]
徐亮, 王凯, 王新永, 等. Cf/SiC复合材料低温铣削工艺优化研究 [J]. 机械制造, 2021(1): 36-40. [百度学术]
XU L,WANG K,WANG X Y, et al. Experimental study on cryogenic cooling milling performance of Cf/SiC composites [J]. Machinery, 2021(1): 36-40. [百度学术]
张健强. Cf/SiC复合材料的低温铣削基础研究 [D]. 南京: 南京航空航天大学, 2021. [百度学术]
ZHANG J Q. Fundamental research on cryogenic milling of Cf/SiC composites [D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2021. [百度学术]
SHYAM, SRINIVAS M S, GAJRANI K K, et al. Sustainable machining of Cf/SiC ceramic matrix composite using green cutting fluids [J]. Procedia CIRP, 2021, 98: 151-156 [百度学术]
向道辉, 秦强, 王艳凤, 等. 碳纤维复合材料专用CVD金刚石涂层刀具的制备及试验研究 [J]. 工具技术, 2015, 49(4): 24-28. [百度学术]
XIANG D H,QING Q,WANG Y F,et al.Preparation and test research of CVD diamond coated tool for carbon fiber composite material [J].Tool Engineering,2015,49(5):24-28. [百度学术]
吴煜斌,张飞飞,王乐,等.C/SiC复合材料表面粗糙度铣削加工工艺研究 [J].航天制造技术,2021(1): 45-48. [百度学术]
WU Y B, ZHANG F F, WANG L, et al. Study on surface roughness milling process of C/SiC composite materials [J]. Aerospace Manufacturing Technology, 2021(1): 45-48. [百度学术]
陈杰,安庆龙,明伟伟,等.PCD刀具几何参数对Cf/SiC复合材料铣削质量的影响[J].工具技术,2020,54(10): 3-8. [百度学术]
CHEN J,AN Q L,MING W W,et al.Milling quality assessment in milling 2D Cf/SiC composites by PCD tools with different geometric parameters [J].Tool Engineering,2020,54(10):3-8. [百度学术]
ZOU F,CHEN J,AN Q L,et al.Influences of clearance angle and point angle on drilling performance of 2D Cf/SiC composites using polycrystalline diamond tools [J]. Ceramics International,2020,46(4):4371-4380. [百度学术]
LACALLE N L,LAMIKIZ A,CAMPA F J,et al. Design and test of a multitooth tool for CFRP milling [J]. Journal of Composite Materials, 2009, 43(26): 16. [百度学术]
苗光. 交错PCD立铣刀铣削碳纤维复合材料试验研究 [D]. 哈尔滨: 哈尔滨理工大学, 2016. [百度学术]
MIAO G. Experimental research on milling carbon fiber reinforced plastics with staggered PCD end mill [D].Harbin: Harbin University of Science and Technology, 2016. [百度学术]
ZHANG R H,LI W N,LIU Y S,et al.Machining parameter optimization of C/SiC composites using high power picosecond laser [J].Applied Surface Science,2015,330: 321-331. [百度学术]
LIU Y S,WANG C H,LI W N,et al.Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser[J].Journal of Materials Processing Technology, 2014, 214: 3131-3140. [百度学术]
ZHAI Z Y,WANG W J,ZHAO J,et al.Influence of surface morphology on processing of C/SiC composites via femtosecond laser [J].Composites Part A: Applied Science and Manufacturing, 2017,102: 117-125. [百度学术]
WANG J,LIU Y,WANG W,et al.Character and mechanism of surface micromachining for C/SiC composites by ultrashort plus laser [J].Advances in Applied Ceramics, 2017, 116(2): 99-107. [百度学术]
刘壮, 方菊, 李元成, 等. 飞秒激光加工SiC/SiC复合材料厚板的孔型特征研究 [J/OL]. 激光技术. https://kns.cnki.net/kcms/detail/51.1125.TN.20220112.1352.002.html. [百度学术]
LIU Z, FANG J, LI Y C, et al. Hole shape characteristics in femtosecond laser drilling of SiC/SiC composite thick plate [J/OL]. Laser Technology. https://kns.cnki.net/kcms/detail/51.1125.TN.20220112.1352.002.html. [百度学术]
LIU C, ZHANG X Z, GAO L, et al. Feasibility of micro-hole machining in fiber laser trepan drilling of 2.5D Cf/SiC composite: experimental investigation and optimization [J]. Optik, 2021, 242: 167186. [百度学术]
ZHAI Z Y,WEI C,ZHANG Y C,et al.Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser [J].Applied Surface Science, 2020, 502: 144131. [百度学术]
YUE X M, LI Q, YANG X D. Influence of thermal stress on material removal of Cf/SiC composite in EDM [J]. Ceramics International, 2020, 46(6): 7998-8009. [百度学术]
ZHANG Y F,CHEN W W,CHENG H W,et al.Machinability for C/SiC composite material by electrical discharge machining [J].Materials Science Forum,2018,913:536-541. [百度学术]
HE W B,HE S T,DU J G,et al.Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite [J].The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4): 507-518. [百度学术]
WEI C J,ZHAO L,HU D J,et al.Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements [J].The International Journal of Advanced Manufacturing Technology,2013,64(1-4):187-194. [百度学术]
魏臣隽,刘剑,许正昊,等.纤维强化陶瓷复合材料的电火花加工[J].电加工与模具,2015(1):25-29,33. [百度学术]
WEI C J,LIU J,XU Z H,et al.EDM of ceramic matrix composite with fiber reinforcement [J].Electromachining & Mould, 2015(1): 25-29,33. [百度学术]
焦健,王宇,邱海鹏,等.陶瓷基复合材料不同加工工艺的表面形貌分析研究[J].航空制造技术,2014(6): 89-92. [百度学术]
JIAO J,WANG Y,QIU H P,et al.Morphology analysis of SiCf/SiC ceramic matrix composites machining surface with different processing technology [J].Aeronautical Manufacturing Technology,2014(6):89-92. [百度学术]
LAPERRIERE L,REINHART G.CIRP Encyclopedia of production engineering [M].Berlin: Springer-Verlag Berlin Heidelberg, 2014. [百度学术]
LAUWERS B, KLOCKE F, KLIML A, et al. Hybrid processes in manufacturing [J]. CIRP Annals-Manufacturing Technology, 2014, 63(2): 561-583. [百度学术]
钟翔福. C/SiC复合材料旋转超声振动辅助铣削实验研究 [D]. 南昌: 南昌航空大学, 2019. [百度学术]
ZHONG X F.Experimental research on rotating ultrasonic vibration assisted milling of C/SiC composites [D].Nanchang: Nanchang Hangkong University, 2019. [百度学术]
王岩. 轴向超声振动辅助磨削加工机理与试验研究 [D]. 天津: 天津大学, 2015. [百度学术]
WANG Y. The mechanism and experimental study of axial ultrasonic vibration assisted grinding [D].Tianjin: Tianjin University, 2015. [百度学术]
曹晓燕. 2.5DSiO2/SiO2陶瓷基复合材料的磨削力与表面评价技术研究 [D]. 天津: 天津大学, 2015. [百度学术]
CAO X Y.Study on grinding force and surface evaluation technology of 2.5D SiO2/SiO2[D].Tianjin: Tianjin University, 2015. [百度学术]
BABBAR A,SHARMA A,JAIN V,et al.Rotary ultrasonic milling of C/SiC composites fabricated using chemical vapor infiltration and needling technique[J].Materials Research Express,2019(6):085607. [百度学术]
肖春芳,韩冰.超声辅助磨削加工碳纤维复合材料的磨削力分析[J].机械设计与研究,2018,34(5):140-142,151. [百度学术]
XIAO C F,HAN B.Research on ultrasonic assisted grinding and grinding force of carbon fiber composites[J].Machine Design and Research,2018,34(5):140-142,151. [百度学术]
YUAN S M,FAN H T,AMIN M,et al.A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining[J].The International Journal of Advanced Manufacturing Technology, 2016,86(1-4):37-48. [百度学术]
ZHANG C,YUAN S M,AMIN M,et al.Development of A cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling [J].The International Journal of Advanced Manufacturing Technology,2016,85(1-4):573-583. [百度学术]
WANG Y,SARIN V K,LIN B,et al.Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites [J].The International Journal of Machine Tools & Manufacture, 2016, 101: 10-17. [百度学术]
LIU Y,LIU Z B,WANG X B,et al.Experimental study on cutting force and surface quality in ultrasonic vibration-assisted milling of C/SiC composites [J].The International Journal of Advanced Manufacturing Technology,2021,112(7/8): 2003-2014. [百度学术]
BERTSCHE E,EHMANN K,MALUKHIN K. Ultrasonic slot machining of a silicon carbide matrix composite [J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8): 1119-1134. [百度学术]
姜杰, 万淑敏, 林彬, 等. 超声振动锉削加工Cf/SiC复合材料试验研究 [J]. 机械科学与技术, 2018, 37(7): 1246-1252. [百度学术]
JIANG J, WANG S M, LIN B, et al. Experimental investigation on filing in ultrasonic vibration process of Cf/SiC composites [J].Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1246-1252. [百度学术]
李欢. Cf/SiC复合材料超声振动锉削加工技术研究 [D]. 天津: 天津大学, 2015. [百度学术]
LI H. Study on the ultrasonic vibration filing of Cf/SiC composites [D]. Tianjin: Tianjin University, 2015. [百度学术]
DING K, FU Y C, SU H H, et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining [J].Journal of Materials Processing Technology, 2014, 214: 2900-2907. [百度学术]
WANG J J, FENG P F, ZHENG J Z, et al. Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill [J]. Ceramics International, 2016, 42(12): 13387-13394. [百度学术]
XUE F, ZHENG K, LIAO W H, et al. Experimental Investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling [J]. Journal of the European Ceramic Society, 2021, 41(6): 3341-3356. [百度学术]
姜庆杰. C/SiC复合材料超声扭转振动辅助铣削研究 [D]. 沈阳: 沈阳航空航天大学, 2015. [百度学术]
JIANG Q J. Research on the technology of ultrasonic torsional vibration assisted milling C/SiC composites [D]. Shenyang: Shenyang Aerospace University, 2015. [百度学术]
WANG J J, FENG P F, ZHANG J F, et al. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration [J]. Manufacturing Letters, 2018, 18: 1-5. [百度学术]
ZHANG X Q, DENG H, LIU K. Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools [J]. CIRP Annals-Manufacturing Technology, 2019, 68(1): 69-72. [百度学术]
ROZZI J C, BARTON M D. The laser-assisted edge milling of ceramic matrix composites [C]. Proceedings of the 2009 ASME International Conference on Manufacturing Science and Engineering Conference (MSEC2009), West Lafayette, Indiana, USA, 2009: 845-852. [百度学术]
ERDENECHIMEG K, JEONG H I, LEE C M. A study on the laser-assisted machining of carbon fiber reinforced silicon carbide [J]. Materials, 2019, 12: 2061. [百度学术]
ZHOU K, XU J Y, XIAO G J, et al. A novel low-damage and low-abrasive wear processing method of Cf/SiC ceramic matrix composites: laser-induced ablation-assisted grinding [J].Journal of Materials Processing Technology, 2022, 302: 117503. [百度学术]
XU J K, TIAN J W, ZHAI C T, et al. Research on laser-assisted orthogonal micromachining technology of Cf/SiC composite [J].The International Journal of Advanced Manufacturing Technology, 2021, 115(11-12): 4047-4058. [百度学术]
DONG X Y, SHIN Y C. Improved machinability of SiC/SiC ceramic matrix composite via laser-assisted micromachining [J].The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 731-739. [百度学术]
WANG L H,XI J.Smart devices and machines for advanced manufacturing [M].London: Springer-Verlag London Limited, 2008. [百度学术]
XIA H J, ZHAO G L, ZHANG Y, et al. Nanosecond laser-induced controllable oxidation of TiB2-TiC ceramic composites for subsequent micro milling[J].Ceramics International, 2022, 48(2): 2470-2481. [百度学术]
XIN L J,ZHANG B,ZHAO G L,et al.Laser-induced oxidation-assisted micromilling of deep narrow microgroove on Inconel 718 [J].The International Journal of Advanced Manufacturing Technology, 2021, 114(1-2): 173-184. [百度学术]
XIA H J, ZHAO G L, MAO P C, et al. Improved machinability of TiB2-TiC ceramic composites via laser-induced oxidation assisted micro-milling [J].Ceramics International, 2021, 47(8): 11514-11525. [百度学术]
ZHAO G L, XIA H J, ZHANG Y, et al. Laser-induced oxidation assisted micro milling of high aspect ratio microgroove on WC-Co cemented carbide[J].Chinese Journal of Aeronautics, 2021, 34(4): 465-475. [百度学术]
赵国龙, 冒鹏程, 杜亚男, 等. 激光诱导氧化辅助微细铣削TA19钛合金高深宽比微结构的研究 [J]. 表面技术, 2021, 50(6): 317-326. [百度学术]
ZHAO G L, MAO P C, DU Y N, et al. Fabrication of high aspect ratio feature on TA19 titanium alloy with laser-induced oxidation assisted micro-milling[J].Surface Technology,2021,50(6):317-326. [百度学术]
ZHAO G L,MAO P C,LI L,et al.Micro-milling of 65 vol% SiCp/Al composites with A novel laser-assisted hybrid process [J]. Ceramics International, 2020, 46(16): 26121-26128. [百度学术]
ZHAO G L, HU M S, LI L, et al. Enhanced machinability of SiCp/Al composites with laser-induced oxidation assisted milling [J]. Ceramics International, 2020, 46(11): 18592-18600. [百度学术]
XIA H J, ZHAO G L, HU M S, et al. Investigation on laser-induced oxidation assisted micro-milling of Inconel 718 [J]. Proc IMech E Part B: J Engineering Manufacture, 2020, 234(8): 1102-1112. [百度学术]
ZHAO G L, XIA H J, LI L, et al. Study on laser-induced oxidation modification coupled with micro milling of WC-Co cemented carbide [J]. Ceramics International, 2020, 46(7): 9554-9566. [百度学术]
XIA H J, ZHAO G L, LI L, et al. Fabrication of high aspect ratio microgroove on Ti6Al4V by laser-induced oxidation assisted micro milling [J]. Journal of Manufacturing Processes, 2019, 45: 419-428. [百度学术]
YANG Y F, ZHAO G L, HU M S, et al. Laser-induced oxidation assisted micro milling of spark plasma sintered TiB2-SiC ceramic [J]. Ceramics International, 2019, 45(10): 12780-12788. [百度学术]
XIA H J, ZHAO G L, YAN J H, et al. Study on laser-induced oxidation assisted micro milling of Ti6Al4V alloy [J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1579-1591. [百度学术]
GOBET M,OBI S,PAVIUS M,et al. Implementation of short-pulse lasers for wafer scribing and grooving applications [J].JLMN-Journal of Laser Micro/Nanoengineering, 2010, 5(1): 16-20. [百度学术]
徐俊杰. SiCf/SiC复合材料的水导激光加工工艺基础研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019. [百度学术]
XU J J. Basic research on the water-jet guided laser processing technology of SiC/SiC composites [D].Harbin: Harbin Institute of Technology, 2019. [百度学术]
BAI C, YE D, YUAN L, et al. Coaxial helical gas assisted laser water jet machining of SiC/SiC ceramic [J]. Journal of Materials Processing Technology,2021,293:117067. [百度学术]