摘要
微波技术的进步促进了电磁防护技术的发展。吸波材料可以将过剩的电磁辐射以热量形式耗散,因此受到了广泛关注。面对复杂的电磁环境,寻找在1~18 GHz频段内兼具强吸收和宽频吸收性能的吸波材料具有重要意义。目前,吸波材料的设计方法主要包括制备纳米复相材料和掺杂改性。通过将介电损耗型和磁损耗型的材料在纳米尺度复合可以实现两种损耗机制的耦合,但制备工艺复杂、纳米填料分散性难以精确控制、高温热稳定性及抗氧化性差等问题是制约纳米复相材料应用的主要因素。超高温陶瓷具有高温热稳定性及抗氧化性好等优点,但阻抗匹配差使其难以作为吸波材料应用。通过设计和制备含有磁性组元的高熵陶瓷可以使超高温陶瓷材料兼具宽频吸收和强吸收的高效吸波性能。采用高熵设计方法可以同时调节导电性和增强磁损耗能力,为导电性良好的介电型吸波材料提供了调控阻抗匹配的新思路。
高频微波具有频带宽、波长短、穿透性强的特点,作为信息载体和能量载体被广泛应用于雷达、通讯和电子对抗等领域,提高了信息科技和生活的水
吸波材料和电磁屏蔽材料的原理可以通过电磁波与材料的相互作用来描述。如

图1 电磁波与材料的相互作用的示意图
Fig.1 Diagrammatic representation of the interactions between electromagnetic wave and materials
注: (a)入射电磁波的损耗机制;(b)电磁屏蔽材料示意图;(c)吸波材料示意图。
为了获得兼具宽频吸收和强吸收性能的吸波材料,需要调控材料的阻抗匹配特性,这可以通过调节材料介电损耗与磁损耗能力之间的平衡实现。材料与电磁波的相互作用强度可以根据复介电常数(-j)和复磁导率(=-j)进行评
= | (1) |
这意味着,当材料的介电损耗与磁损耗能力相当时,阻抗匹配理想,入射电磁波全部进入材料内部。因此,理想的吸波材料不仅需要具有强损耗能力,还需要介电损耗与磁损耗能力之间达到平衡,使其兼具良好的表面阻抗匹配和电磁波衰减能力,可以同时实现强吸收和宽频吸收。
吸波材料的介电损耗主要包括介电极化弛豫损耗()和电导损耗(
(2) |
式中,和分别为真空介电常数和光频相对介电系数,为角频率,为弛豫时间,f为频率,为温度依赖的电导率。对于介电材料,介电损耗主要方式为介电极化弛豫损耗。如

图2 频率依赖的介电极化机制对电介质的极化能力的贡献示意图
Fig.2 Diagrammatic representation of the contribution of different frequency dependent dielectric polarization
吸波材料的磁损耗机制主要包括共振损耗和涡流损
C0=()d | (3) |
式中,是真空磁导率。当C0值不随f改变时,可以判断磁损耗的主要机制为涡流损耗,否则为共振损耗。
根据传输线理论和金属背板模型可以分析吸波材料的性能。介电损耗和磁损耗耦合效果可以根据衰减系数()和阻抗匹配(Z)评
(4) |
Z==tanh | (5) |
式中,Z0为自由空间的波阻抗,Zin为空气和吸波材料界面处的归一化输入阻抗,f为频率,d为厚度,c为光速。衰减系数()是电磁波传播系数的实部,其值越大,电磁波在材料中传播时衰减越快。由
电磁波在材料表面的反射强度可以根据反射损耗(RL)值评
RL(dB)=20lg | (6) |
在金属背板模型下,透射电磁波能量为0,则RL值越小,被反射的电磁波比例越小,被吸收的电磁波比例越大。当RL值小于-10 dB时,90%以上的入射电磁波被吸收,将RL值小于-10 dB的频段定义为有效吸收频宽(effective absorption bandwidth, EAB)。根据有效吸收频宽和阻抗匹配的定
RL(dB)=20lg-10dB | (7) |
可以得到实现有效吸收时阻抗匹配应满足0.52≤Z≤1.93。理想的吸波材料应兼具低的反射损耗及宽的有效吸收频宽,同时实现强吸收和宽频吸收。
根据电磁波损耗机制,吸波材料可以分为三类:介电损耗型、磁损耗型以及介电损耗与磁损耗耦合型。单一损耗机制(介电损耗或磁损耗能力)占主导的吸波材料由于阻抗匹配特性较差,仅在窄频率范围内实现电磁波耗散,难以同时实现强吸收和宽频吸收。为了获得高性能的吸波材料,需要调控阻抗匹配特性,发挥介电损耗与磁损耗的耦合效应。目前,主要设计策略包括制备纳米复相材料和掺杂改性。
通过将介电损耗型吸波材料(导电材料或介电材料)与磁损耗型吸波材料(磁性材料)复合制备纳米复相材料,可以丰富材料对电磁波的衰减机制,有利于改善材料的阻抗匹配特性。
低维导电材料,如碳纳米管(carbon nanotube, CNT
LIANG等人通过溶剂热法在二维Ti3C2Tx层上生长Ni纳米颗粒,通过调节Ni的颗粒大小和相对含量[

图3 Ni@MXene纳米复相材料的制备方法及吸波性
Fig.3 Preparation method and EM absorption properties of Ni@MXene nano-composite
注: (a)制备流程图,不同Ni含量的Ni@MXene纳米复相材料;(b)阻抗匹配值;(c)反射损耗值与有效吸收频宽。
ZENG等人通过水热法合成了3维链状的Fe3O4/CNTs纳米复合材料,其形貌示意图如

图4 Fe3O4/CNTs纳米复合材料的形貌及吸波性
Fig.4 Microstructure and EM wave absorption properties of Fe3O4/CNTs nano-composite
SiC作为典型的介电材料,具有质量轻、高温热稳定性好、抗高温氧化、力学性能优异等特点。但是,纯相SiC由于介电损耗占主导,其阻抗匹配特性和吸波性能并不理
纳米复相吸波材料具有如下优点:由两类材料分别提供强的介电损耗和磁损耗能力,可以实现介电损耗与磁损耗的协同作用;纳米材料具有高比表面积,有利于增强极化弛豫损耗能力;通过调节两类材料的比例,可以有效调控阻抗匹配特性。但也存在一些弊端:一方面,纳米复相材料的制备工艺相对复杂,并且难以对界面结构和纳米填料分散性进行精确控制,而纳米填料的团聚会导致材料力学性能和电磁性能恶化;另一方面,纳米复相材料的高温热稳定性、抗氧化性和抗酸碱腐蚀性仍是不容忽视的问题。因此,在单相材料中实现介电损耗和磁损耗的协同效应具有重要意义。
元素掺杂是使单相材料获得优异吸波性能的重要方法。一方面,通过元素掺杂可以提高材料中的极化弛豫损耗能力;另一方面,通过调整掺杂元素的种类和浓度,可以对单相材料进行改性,实现介电损耗与磁损耗能力之间的平衡。
LUO等用熔盐法制备了一系列M位不同的三元过渡金属碳化物MAX相固溶体(V1-x-yTixCry)2AlC,并研究了它们的吸波性
CHENG等人通过一步水热还原法制备了原子比例不同的FexCoy合金(x∶y=0∶10、3∶7、5∶5和7∶3),调控了阻抗匹配特性和吸波性
超高温陶瓷材料(Ultra-high temperature ceramics,UHTCs)包括过渡金属碳化物(Transition metal carbides,TMCs)、过渡金属二硼化物(Transition metal diborides,TMB2)、稀土金属六硼化物(Rare-earth hexaborides,REB6)和稀土金属四硼化物(Rare-earth tetraborides,REB4)等,具有良好的高温热稳定性(

图5 超高温陶瓷材料的理论密度(ρ)和熔点(Tm)
Fig.5 Theoretical density (ρ) and melting points (Tm) of ultra-high temperature ceramics
近年来,高熵陶瓷(High entropy ceramics, HECs)的兴起为吸波材料的设计提供了新思路。高熵陶瓷是指由多种具有等摩尔比或近等摩尔比的元素占据无机化合物晶体结构中阳离子或阴离子位点而形成的多组元单相固溶体,其构型熵高于1.5
如1.2节中所述,要获得具有强吸收和宽频吸收的吸波材料,不仅需要使其具有强损耗能力,还需要调节介电损耗能力和磁损耗能力之间的平衡。对于导电材料,其介电损耗能力比磁损耗能力强得多。在高熵陶瓷中,将具有不同原子尺寸、晶体结构的组元固溶在一起,材料局部化学环境会产生强烈的晶格畸变(局部应力)和应力涨落,从而可以增强电子散射作用并降低电子电导率,减弱电导损

图6 高熵陶瓷粉末合成过程示意图
Fig.6 Schematic illustration of the experimental procedure for synthesizing high-entropy ceramic powders
如

图7 TMCs 的晶体结构及TM-d轨道分裂情
Fig.7 Crystal structure of TMCs and the splitting scenario of TM-d orbital
ZHOU等人通过第一性原理计算和实验研究系统研究了TMCs(TM=Ti,Zr,Hf,Nb,Ta)和高熵(Ti,Zr, Hf,Nb,Ta)C的电子结构和吸波性

图8 五种TMCs (TM = Ti, Zr, Hf, Nb, Ta)的介电损耗角正切值、磁损耗角正切值、阻抗匹配值、反射损耗值的对比、HfC和TaC材料的反射损耗值对频率和厚度的依赖
Fig.8 Dielectric loss tangent,agnetic loss tangent,impedance match, and reflection loss of TMCs (TM = Ti, Zr, Hf, Nb, Ta), frequency and thickness dependent reflection loss for HfC and Ta
ZHANG等将高熵(Ti,Zr,Hf,Nb,Ta)C吸波性能的下降归因于TiC的影响,他们进一步设计并制备了(Zr,Hf,Nb,Ta)C(HE TMC-2)和(Cr,Zr,Hf,Nb,Ta)C(HE TMC-3)高熵陶瓷,并比较了它们与(Ti,Zr,Hf, Nb,Ta)C(HE TMC-1)的吸波性

图9 三种HE TMCs的吸波性能
Fig.9 EM wave absorption performance of three HE TMCs: (a) dielectric loss tangent and (b) magnetic loss tangent, contour maps of reflection loss (RL) and impedance match (Z) values of HE TMC-2(c,d) and HE TMC-3(e,f)
TMB2具有良好的导电性,但由于在表面容易形成导电网络使入射电磁波被直接反射,无法实现对电磁波的有效吸收。纯相ZrB2在样品厚度为1~5 mm、测试频率为2~18 GHz的范围内反射损耗最小值(RL)不小于-5 dB,而有效吸收频宽(EAB)为

图10 三种HE TMB2s的吸波性
Fig.10 EM wave absorption performance of three HE TMB2
与其他超高温陶瓷类似,稀土六硼化物 (REB6) 良好的导电性使其表面容易直接反射电磁波,赋予NdB6良好的电磁屏蔽性能。为了实现高效吸波,可以通过高熵设计的方法有效调控阻抗匹配。ZHANG等人采用B4C热还原法合成了五种单相的高熵稀土六硼化物粉末(High-entropy rare-earth hexaborides, HE REB6)。如

图11 HE REB6及HE REB6基复相材料的电磁损耗能力的对
Fig.11 Comparison of EM wave attenuation capability among HE REB6 and HE REB6 based composites containing HE TEBO3
通过高熵组分设计和高熵复相设计,可以灵活调控材料的阻抗匹配以获得高性能的吸波材料。CHEN等人通过改变稀土RE元素以及RE2O3的比例,制备了具有强吸收和宽频吸收性能的HE RE3Si2C2/HE RE2O3(HE RSC)复相材

图12 高熵超高温陶瓷材料和其他吸波材料的最小反射损耗值(RLmin)和最大有效吸收频宽(EAB)的对比
Fig.12 Comparison of the minimum reflection loss(RLmin) and maximum effective absorption bandwidth (EAB) of high-entropy ultra-high temperature ceramics and other absorbing materials
从图中可以看出单相的高熵超高温陶瓷材料具有优异的吸波性能,其中HE TMC-3(TM=Cr, Zr,Hf,Nb,Ta)和HE TMB2-3(TM=Cr,Zr,Hf,Nb, Ta)具有超宽频吸收性能,并且Cr成分有利于高温下在材料表面生成保护性氧化膜。因此,HE TMC-3和HE TMB2-3具有良好的高温热稳定性、抗氧化性以及优异的吸波性能,作为高温吸波材料具有良好的应用潜力。
为了实现介电损耗与磁损耗的协同作用,目前最主要的方法是通过将介电损耗型吸波材料(导电材料或介电材料)与磁损耗型吸波材料(磁性材料)复合制备纳米复相材料。但是,该方法存在制备工艺复杂、磁性组元无法在高温下应用等不足。超高温陶瓷的高温热稳定性及抗氧化性好,但阻抗匹配差使其吸波性能有限。通过高熵组分设计,在高熵过渡金属碳化物、高熵过渡金属二硼化物和高熵稀土六硼化物中可以实现两种损耗机制的耦合,从而获得具有强吸收和宽频吸收能力的高性能吸波材料。制备高熵陶瓷吸波材料的方法具有以下优点和挑战:
(1)制备方法简单高效,通过碳热合成反应、硼碳热合成反应可以一锅法实现高通量合成、筛选,并且可以实现大批量合成。但是,高熵陶瓷材料的成分设计空间大,试错法可能会忽略最优组合,并且效率较低。结合材料计算和模拟,可以加速新材料的研发进程;
(2)微米级的单相高熵陶瓷粉末即可实现强吸收和宽频吸收性能。但是,高熵过渡金属碳化物和高熵过渡金属二硼化物存在密度较大的缺点,通过纳米设计和结构设计有望降低密度,并进一步优化吸波性能;
(3)高熵陶瓷材料具有比单相材料更好的高温热稳定性、抗氧化性和吸波性能,作为高温吸波材料具有良好潜力。因此,未来需要进一步开展关于高熵吸波材料的高温吸波性能的研究。
参考文献
GOLIO J M. The RF and microwave handbook[M]. London: CRC Press, 2001. [百度学术]
董士伟, 王颖, 李军, 等. 微波毫米波功率合成技术[M]. 上海: 上海交通大学出版社, 2012. [百度学术]
DONG SW, WANG Y, LI J, et al. Microwave and millimeter wave combining technology[M]. Shanghai: Shanghai Jiaotong University Press, 2012. [百度学术]
JAMSHED M A, HÉLIOT F, BROWN T W C. A Survey on electromagnetic risk assessment and evaluation mechanism for future wireless communication systems[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4(1):24-36. [百度学术]
刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2013. [百度学术]
LIU SH, LIU JM, DONG XL, et al. Electromagnetic wave shielding and absorbing materials[M]. Beijing: Chemical Industry Press, 2013. [百度学术]
ZIKIDIS K, SKONDRAS A, TOKAS C. Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modelling, 2014, 4(1):129-165. [百度学术]
AHMAD H, TARIQ A, SHEHZAD A, et al. Stealth technology: methods and composite materials—a review[J]. Polymer Composites, 2019, 40(12):4457-4472. [百度学术]
PANG H, DUAN Y, HUANG L, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B: Engineering, 2021, 224:109173. [百度学术]
AL-JOTHERY H K M, ALBARODY T M B, YUSOFF P S M, et al. A review of ultra-high temperature materials for thermal protection system[J]. IOP Conference Series: Materials Science and Engineering, 2020, 863:12003. [百度学术]
XIANG H, XING Y, DAI F-Z, et al. High-entropy ceramics: present status, challenges, and a look forward[J]. Journal of Advanced Ceramics, 2021, 10(3):385-441. [百度学术]
陈政伟, 范晓孟, 黄小萧, 等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020, 41(1/2):3-100. [百度学术]
CHEN ZW, FAN XM, HUANG XX, et al. Research progress and prospestion on high-temperature wave-absorbing ceramic materials[J]. Advanced Ceramics, 2020, 41(1/2):3-100. [百度学术]
KLASCIUS A F. Microwave radiation protective suit[J]. American Industrial Hygiene Association Journal, 1971, 32(11):771-774. [百度学术]
TUNAKOVA V, TUNAK M, TESINOVA P, et al. Fashion clothing with electromagnetic radiation protection: aesthetic properties and performance[J]. Textile Research Journal, 2020, 90(21/22):2504-2521. [百度学术]
XIE S, JI Z, ZHU L, et al. Recent progress in electromagnetic wave absorption building materials[J]. Journal of Building Engineering, 2020, 27:100963. [百度学术]
解帅, 冀志江, 杨洋, 等. 电磁波吸收建筑材料的应用研究进展[J]. 材料导报, 2016, 30(13):8. [百度学术]
XIE S, JI Z J, YANG Y, et al. Recent progress in electromagnetic wave absorbing materials[J]. Materials Reports, 2016, 30(13):8. [百度学术]
TILLEY R J D. Understanding solids: The science of materials[M]. 2nd ed. Chichester West Sussex United Kingdom: Wiley, 2013. [百度学术]
VAN BEEK L. The maxwell-wagner-sillars effect, describing apparent dielectric loss in inhomogeneous media[J]. Physica, 1960, 26(1):66-68. [百度学术]
NEELAKANTA P S. Handbook of electromagnetic materials: monolithic and composite versions and their applications[M]. Florida: CRC Press, 1995. [百度学术]
LIU Y, CUI T, WU T, et al. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach[J]. Nanotechnology, 2016, 27(16):165707. [百度学术]
黄昆, 韩汝琦. 固体物理学[M]. 北京: 高等教育出版社, 1988:394-395. [百度学术]
HUANG K, HAN RQ, Solid state physics[M]. Beijing: Higher Education Press, 1988:394-395. [百度学术]
QI X,XU J,HU Q,et al.Metal-free carbon nanotubes:synthesis,and enhanced intrinsic microwave absorption properties[J]. Scientific Reports, 2016(6):28310. [百度学术]
ZHAO X, ZHANG Z, WANG L, et al. Excellent microwave absorption property of Graphene-coated Fe nanocomposites[J]. Scientific Reports, 2013,3(1):3421. [百度学术]
LIANG L, YANG R, HAN G, et al. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene[J]. ACS Applied Materials & Interfaces, 2020, 12(2):2644-2654. [百度学术]
ZENG X, ZHU L, YANG B, et al. Necklace-like Fe3O4 nanoparticle beads on carbon nanotube threads for microwave absorption and supercapacitors[J]. Materials & Design, 2020, 189:108517. [百度学术]
HUA A, WEI F, PAN D, et al. Wide-band microwave absorption by in situ tailoring morphology and optimized N-doping in nano-SiC[J]. Applied Physics Letters, 2017, 111(22):223105. [百度学术]
DONG S, CHEN Y, HONG C. Synergetic impedance matching and loss ability towards efficient microwave absorption of Fe3O4 nanoparticles anchored on SiC whiskers via a simple solvothermal method[J]. Journal of Alloys and Compounds, 2020, 838:155558. [百度学术]
LUO W,LIU Y,WANG C,et al. Molten salt assisted synthesis and electromagnetic wave absorption properties of (V1-x-yTixCry)2AlC solid solutions[J].Journal of Materials Chemistry C, 2021, 9(24):7697-7705. [百度学术]
CHENG Y, JI G, LI Z, et al. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio[J]. Journal of Alloys and Compounds, 2017, 704:289-295. [百度学术]
LI N, HUANG G-W, LI Y-Q, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure[J]. ACS Applied Materials & Interfaces, 2017, 9(3):2973-2983. [百度学术]
ZHANG W, ZHANG X, ZHU Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber[J]. Journal of Colloid and Interface Science, 2021, 586:457-468. [百度学术]
QING Y, ZHOU W, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International, 2016, 42(14):16412-16416. [百度学术]
HE J,LIU S,DENG L, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites[J].Applied Surface Science, 2020,504:144210. [百度学术]
YAN L, WANG X, ZHAO S, et al. Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(12):11116-11125. [百度学术]
PIERSON H O. Handbook of refractory carbides and nitrides:properties,characteristics,processing,and applications[M]. New Jersey: Noyes Publications, 1996. [百度学术]
GOLLA B R, MUKHOPADHYAY A, BASU B, et al. Review on ultra-high temperature boride ceramics[J]. Progress in Materials Science, 2020, 111:100651. [百度学术]
SPEAR K E. Phase behavior and related properties of rare-earth borides[M]//Alper A M. Phase Diagrams: Materials Science and Technology. London: Academic Press, 1976: 91-159. [百度学术]
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6(1):8485. [百度学术]
ZHOU J, ZHANG J, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceramics International, 2018, 44(17):22014-22018. [百度学术]
DONG Y,REN K,LU Y,et al.High-entropy environmental barrier coating for the ceramic matrix composites[J].Journal of the European Ceramic Society,2019,39(7):2574-2579. [百度学术]
SARKAR A,LOHO C,VELASCO L,et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency[J]. Dalton Transactions, 2017, 46(36):12167-12176. [百度学术]
ZHANG H,ZHAO B,DAI F-Z, et al.(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B:A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band[J].Journal of Materials Science & Technology,2021,77:58-65. [百度学术]
BÉRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides[J]. physica status solidi (RRL)-Rapid Research Letters, 2016, 10(4):328-333. [百度学术]
SARKAR A, VELASCO L, DI WANG, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1):3400. [百度学术]
WITTE R, SARKAR A, VELASCO L, et al. Magnetic properties of rare-earth and transition metal based perovskite type high entropy oxides[J]. Journal of Applied Physics, 2020, 127(18):185109. [百度学术]
CUPPARI M G, SANTOS S F. Physical properties of the NbC carbide[J].Metals , 2016, 6(10):250. [百度学术]
ZHOU Y,ZHAO B,CHEN H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology, 2021, 74:105-118. [百度学术]
ZHANG W, XIANG H, DAI F Z, et al. Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbide (HE TMC)[J]. Journal of Advanced Ceramics, 2022,11:545-555. [百度学术]
JIAN X, TIAN W, LI J, et al. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption[J]. ACS Applied Materials & Interfaces, 2019, 11(17):15869-15880. [百度学术]
ZHANG W, DAI F-Z, XIANG H, et al. Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2)[J]. Journal of Advanced Ceramics, 2021, 10:1299-1316. [百度学术]
ZHANG W, ZHAO B, XIANG H, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders[J]. Journal of Advanced Ceramics,2021,10(1):62-77. [百度学术]
ZHANG W, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. Journal of Materials Science & Technology, 2021, 87:155-166. [百度学术]
CHEN H, ZHAO B, ZHAO Z, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. Journal of Materials Science & Technology, 2020, 47:216-222. [百度学术]
BAO S, CHEN Y, HU F, et al. Investigation on microstructure, wave absorbing properties and high temperature stability for (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O high-entropy ceramics[J]. doi: 10.21203/rs.3.rs-703471/v1. [百度学术]
HOSSEINI MOHAMMADABADI F,MASOUDPANAH S M,ALAMOLHODA S,et al.Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1-xCoxFe2O4)/graphene nanocomposites[J].Journal of Materials Research and Technology, 2021, 14:1099-1111. [百度学术]