摘要
采用MMUD-10B型摩擦磨损试验机分别在干摩擦和水润滑两种不同环境下,固定转速为100 r/min,在不同载荷下(70、150和230 N)对摩擦配副C/C-40Cr进行摩擦学性能对比分析及表征。利用奥林巴斯GX51金相显微镜观察试样表面的磨痕、采用JJ324BC型的电子天平表征每次实验的磨损量、使用JSM-6510A型扫描电子显微镜(带有EDS能谱仪)观察磨屑的形貌及各元素的原子比。结果表明:在干摩擦中,试样的摩擦因数较大,在0.046~0.070波动,磨损量较少,且摩擦因数与磨损量随着载荷的增加而增加;在水润滑摩擦情况下,摩擦因数变化范围较小,在0.037~0.052,但磨损量较大。干摩擦和水润滑条件下的摩擦因数和磨损量与载荷的大小呈正相关趋势。此外磨屑中稳定存在碳纤维和片层状的40Cr,磨损机制为黏着磨损和磨粒磨损共同作用。
关键词
摩擦学的发展已经不单单是探究传统的机械和力学性
近些年,C/C复合材料由于其具有高比强度和比模量,良好的热稳定性、抗烧蚀性及优异的摩擦学性能,在航天航空领域得到广泛的应
基于此,本文模拟两种润滑环境(干摩擦和水润滑),并在此基础上系统考察该配副在重载条件下(70、150和230 N)的摩擦学行为,并对磨痕、磨屑形貌及化学成分进行系统分析,以期对针刺C/C复合材料-40Cr摩擦配副的实际工程应用提供理论指导。
配副材料为针刺C-C复合材料和40Cr。其中上配副材料为针刺C/C复合材料,直径为Φ6 mm×15 mm,其成型工艺为:将无纬布和碳纤维网胎交替叠层铺放,利用针刺把碳纤维制成多孔的碳毡,采用化学气相渗透(CVI)和树脂浸渍/碳化(I/C)的工艺进行致密化,并进行石墨化处理,使其密度达到1.82 g/c

图1 磨销和磨盘的尺寸
Fig.1 Dimensions of grinding pins and grinding discs

图2 C/C-40Cr在不同载荷下的干摩擦及水润滑条件下的摩擦因数及磨损率变化
Fig.2 The curve of friction coefficient and wear rate of C/C-40Cr under dry friction and water lubrication with different loads
此外,在摩擦过程中,载荷大小会影响磨损量,对于干摩擦,随着载荷增大,磨损量逐渐增多,这可能是由于在摩擦初期,当转速恒定时,摩擦产生了一些硬质磨

图3 干摩擦时在不同载荷下40Cr的磨痕形貌
Fig.3 Wear track of 40Cr microstructure under dry friction with 3 different loads
(a) 70 N (b) 150 N (c) 230 N
由图可知试样表面存在不同程度的磨损,沿着相对运动方向出现明显的深浅不一的梨沟状的磨痕,与此同时还伴有黏着坑,这是典型的黏着磨

图4 水润滑时在不同载荷下40Cr的磨痕形貌
Fig.4 Wear track of 40Cr microstructure under three different loads in water lubrication
(a) 70 N (b) 150 N (c) 230 N
综上所述,在干摩擦和水润滑摩擦下,40Cr的磨损机理主要是黏着磨损。上下配副之间剧烈作用,产生的一些硬质磨粒相互黏着、断裂和弹塑性形变,使得摩擦副表面的温度升高,成分、组织和性能发生变化,出现明显的黏着坑和一些深浅不一的梨沟,甚至出现一些撕碎断裂现象,并最终对实验结果产生影响。

图5 在干摩擦环境下3种不同载荷下的磨屑形貌
Fig.5 Morphology of wear debris under dry friction with 3 different loads
(a) 70 N ;(b)150 N ;(c) 230 N。
由图可知:其主要由纤维状的C/C复合材料和片层状的40Cr构成,可观察到纤维管状的C/C复合材料发生了明显的断裂,片层状的40Cr表面有一些明显的黏着坑,表面伴有严重的撕碎断裂痕迹,这是典型的黏着磨损与磨粒磨损。随着载荷的不断增大,磨屑量也越来越多,磨屑中片层状的40Cr具有显著的层状特征,观察其形貌可知,材料的磨损主要是黏着磨损和磨粒磨损。
如

图6 在水润滑环境下3种不同载荷下的磨屑形貌
Fig.6 The morphology of wear debris in water lubrication with 3 different loads
(a) 70 N;(b)150 N;(c) 230 N 。

(a) 干摩擦

(b) 水润滑
图7 150 N作用下产生的磨屑EDS曲线
Fig.7 EDS curve of wear debris produced under 150N
可以看出,在干摩擦中C原子比为34.32%,在水润滑中C原子比为89.97%,即在水润滑中C元素的含量高于干摩擦,由于石墨是一种结晶形态,具有六方晶格,原子呈层状排步,同一层晶面上碳原子间距0.142 nm,相互之间是共价键结合,层与层之间的距离为0.34 nm,原子间呈分子键结合,层与层之间的作用力很小,故很容易在层间发生相对滑
(1)在干摩擦中,摩擦因数较大(0.046~0.070),但磨损量较小,随着载荷的增加摩擦因数逐渐增加,波动范围较大。
(2)在水润滑摩擦下,摩擦因数较小(0.037~0.052),磨损量较大,随着载荷的增加摩擦因数缓慢增大。
(3)C/C-40Cr摩擦配副水润滑摩擦因数明显小于干摩擦,即水润滑条件下可起到减磨作用。
(4)磨屑中均包含纤维状C/C复合材料和片层状的40Cr,主要磨损机制为黏着磨损和磨粒磨损。
参考文献
HOLMBERG K,ERDEMIR A.Influence of tribology on global energy consumption,costs and emissions[J].Friction,2017,5(3):263-284. [百度学术]
张会杰,孙乐民,张永振,等.环境气氛对C/C复合材料载流摩擦学性能的影响[J].摩擦学学报,2015,35(2):236-241. [百度学术]
ZHANG H J,SUN L M,ZHANG Y Z,et al.The influence of environmental atmosphere on the tribological performance of C/C composites under electrical current[J].Tribology.2015,35(2):236-241. [百度学术]
MARTINI A,RAMASAMY U S,LEN M.Review of viscosity modifier lubricant additives[J].Tribology Letters,2018,66(2):58. [百度学术]
YANG Z W,WANG C L,HAN Y,et al.Design of reinforced interfacial structure in brazed joints of C/C composites and Nb by pre-oxidation surface treatment combined with in situ growth of CNTs[J].Carbon,2019,143:494-506. [百度学术]
ZHANG Y,WANG H,LI T,et al.Ultra-high temperature ceramic coating for C/C composites against ablation above 2 000 K[J].Ceramics International,2018,44(3):3056-3063. [百度学术]
CHOWDHURY P,SEHITOGLU H,RATEICK R.Damage tolerance of C/C composites in aerospace application[J].Carbon,2018,126:382-393. [百度学术]
ALGHAMDI A,ALHARTHI H,ALAMOUDI A,et al.Effect of needling parameters and manufacturing porosities on the effective thermal conductivity of a 3D C/C composite[J].Materials,2019,12(22):3750. [百度学术]
ZHAO L,XU Z.Method of forming a flexible carbon composite self-lubricating seal:U.S.Patent 10,300,627[P]. 2019-5-28. [百度学术]
ZHONG N,ZHOU Y X,ZHU X F,et al. Microstructure and cutting performance of carbonitride coated tools in high speed machining of 40Cr steel[J].Surface Engineering,2011,27(4):306-310. [百度学术]
孙乐,王成,李晓飞,等.C/C复合材料预制体的研究进展[J].航空材料学报,2018,38(2):86-95. [百度学术]
SUN L,WANG C,LI X F,et al.Research progress on preforms of C/C composites[J].Journal of Aeronautical Materials,2018,38(2):86-95. [百度学术]
WU X,LUO R.Mechanical properties investigation of carbon/carbon composites fabricated by a fast densification process[J].Materials & Design,2011,32(4):2361-2364. [百度学术]
ZHANG J,LUO R,XIANG Q,et al.Compressive fracture behavior of 3D needle-punched C/C composites[J].Materials Science and Engineering:A,2011,528(15):5002-5006. [百度学术]
PEI X,PU W,ZHANG Y,et al.Surface topography and friction coefficient evolution during sliding wear in a mixed lubricated rolling-sliding contact[M].Tribology International,2019. [百度学术]
HUANG L,YUAN J,LI Cet al.Microstructure, tribological and cutting performance of Ti-DLC/α-C:H multilayer film on cemented carbide[J].Surface and Coatings Technology,2018,353:163-170. [百度学术]
VITYAZ P A,KOMAROV A I,KUSHCH S D,et al. The structure and tribological behavior of nanocomposite carbide coating on steel 45[J].Journal of Friction and Wear,2010,31(6):407-412. [百度学术]
TYUFTYAEV A S,MORDYNSKII V B,ZHELOBTSOV E A.Wear resistance of high-carbon steel with dry friction and abrasion[J].Steel in translation,2015,45(10):796-802. [百度学术]
王成彪,刘家浚,韦淡平.摩擦学材料及表面工程[M].北京:国防工业出版社,2012:40-42. [百度学术]
WANG C B,LIU J X,WEI D P.Tribological materials and surface engineering[M].Beijing:National Defense Industry Press,2012:40-42. [百度学术]
SINGH H,SODHI G P S,SINGH M,et al.Study: wear and superhydrophobic behaviour of PTFE-ceria composite[J].Surface Engineering,2019,35(6):550-556. [百度学术]