en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
DHAMIA K.Study of electromagnetic radiation pollution in an Indian city[J].Environmental Monitoring Assessment,2012,184(11):6507-6512.
参考文献 2
LINGJ Q,ZHAIW T,FENGW W,et al.Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding[J].ACS Applied Materials and Interfaces,2013,5(7):2677-2684.
参考文献 3
KONGL,YINX W,YUANX Y,et al.Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites[J].Carbon,2014,73(73):185-193.
参考文献 4
YINX W,KONGL,ZHANGL T,et al.Electromagnetic properties of Si-C-N based ceramics and composites[J].International Materials Reviews,2014,6(59):326-355.
参考文献 5
邓联文,黄生祥,刘鑫,等.聚苯乙烯-磁性吸收剂复合材料微波吸收特性研究[J].功能材料,2012,43(6):764-766.
参考文献 6
黄啸谷,黄宝玉,张晶,等.MgxZn(1-x)Fe2O4铁氧体的制备及其电磁特性[J].南京工业大学学报(自然科学版),2013,35(1):47-51.
参考文献 7
GAOY,ZHAOY,JIAOQ Z,et al.Microemulsion-based synthesis of porous Co-Ni ferrit nanorods and their magnetic properties[J].Journal of Alloys and Compounds,2013,555(13):95-100.
参考文献 8
李保东,李巧玲,张存瑞,等.铁氧体复合吸波材料研究新进展[J].材料导报,2008,22:226-229.
参考文献 9
HEY,LUL,SUNK,et al.Electromagnetic wave absorbing cement-based composite using nano-Fe3O4 magnetic fluid as absorber[J].Cement and Concrete Composites,2018,92:1-6.
参考文献 10
WIDANARTOW,ARDENTIE,GHOSHALS K,et al.Significant reduction of saturation magnetization and microwave reflection loss in barium-natural ferrite via Nd3+ substitution[J].Journal of Magnetism and Magnetic Materials,2018,456:288-291.
参考文献 11
YANGC,JIANGJ,LIUX,et al.Rare earth ions doped polyanilin/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization hydrothermal route:preparation and microwave-absorbing properties[J].Journal of Magnetism and Magnetic Materials,2016,404(36):45-52.
参考文献 12
SADIQI,NASEEMS,ASHIQM N,et al.Tunable microwave absorbing nano-material for X-band applications[J].Journal of Magnetism and Magnetic Materials,2016,401:63-69.
参考文献 13
NAK H,KIM W T,PARKD C,et al.Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process[J].Thin Solid Films,2018,660:358-364.
参考文献 14
XIANGJ,HOUZ,ZHANGX,et al.Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers[J].Journal of Alloys and Compounds,2018,737:412-420.
参考文献 15
LIUG,ZHANGZ,DANGF,et al.Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun[J].Journal of Magnetism and Magnetic Materials,2016,412:55-62.
参考文献 16
PaulsonS,HelserA,NardelliMB,et al.Tunable resistance of a carbon nano-tube graphite interface[J].Science, 2001,290(5497):1742-1744.
参考文献 17
SHUR,ZHANGG,WANGX,et al.Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high performance electromagnetic wave absorbers[J].Chemical Engineering Journal,2018,337:242-255.
参考文献 18
BIBIM,ABBASS M,AHMADN,et al.Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J].Composites Part B,2017,114:139-148.
参考文献 19
JIAX,WANGJ,ZHUX,et al.Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbonnanotubes for microwave absorption[J].Journal of Alloys and Compounds,2017,697:138-146.
参考文献 20
PENGJ,PENGZ,ZHUZ,et al.Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method[J].Ceramics International,2018,44(17):21015-21026.
参考文献 21
WUJ,YEZ,LIUW,et al.The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J].Ceramics International,2017,43:13146-13153.
参考文献 22
LINY,DAIJ,YANGH,et al.Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J].Chemical Engineering Journal,2018,334:1740-1748.
参考文献 23
WANGS,ZHAOY,XUEH,et al.Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J].Materials Letters,2018,223:186-189.
参考文献 24
ZHAOT,JIX,JINW,et al.Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D aerogel/BaFe12O19 nanocomposite[J].Journal of Alloys and Compounds,2017,708:115-122.
参考文献 25
GHOLAMPOORM,MOVASSAGH-ALANAGHF,SALIMKHANIH,et al.Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method[J].Solid State Sciences,2017,64:51-61.
参考文献 26
ZHANY,LONGZ,WANX,et al.3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance[J].Applied Surface Science,2018,444:710-720.
参考文献 27
FARIDM A,AIDINB K,AMINA A.Three-phase PANI@nano-Fe3O4@CFs heterostructure:Fabrication,characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite[J].Composites Science and Technology,2017,150:65-78.
参考文献 28
HUANGJ,WANM.Temperature and pressure dependence of conductivity of polyaniline systhesized by in situ doping polymer-ization in the precence of organic function acid as dopants[J].Solid State Communications,1998,108(4):255-259.
参考文献 29
DUM,YAOZ,ZHOUJ,et al.Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite[J].Synthetic Metals,2017,223:49-57.
参考文献 30
ZHANGX,XIANGJ,WUZ,et al.Enhanced absorbing properties and structural design of microwave absorbers based on Ni0.8Co0.2Fe2O4 nanofibers and Ni-C hybrid nanofibers[J].Journal of Alloys and Compounds,2018,764:691-700.
参考文献 31
LIY,MA L,GANM,et al.Magnetic PANI controlled by morphology with enhanced microwave absorbing property[J].Materials Letters,2015,140:192-195.
参考文献 32
XUF,MA L,GANM,et al.Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties[J].Journal of Alloys and Compounds,2014,593(593):24-29.
参考文献 33
李涓碧.手性(螺旋)基质与钴铁氧体复合物的制备及其电磁性能研究[D].金华:浙江师范大学,2015.
参考文献 34
杜咪咪.手性聚苯胺/锂锌铁氧体复合材料的制备及电磁性能研究[D].南京:南京航空航天大学,2017.
参考文献 35
SHENJ,FENGJ,LIL,et al.Synthesis and excellent electromagnetic absorbing properties of copolymer (N-methylpyrrole-co-pyrrole) and Ba-Nd-Cr ferrite[J].Journal of Alloys and Compounds,2015,632:490-499.
参考文献 36
SHENJ,CHENK,LIL,et al.Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites[J].Journal of Alloys and Compounds,2014,615(9):488-495.
参考文献 37
KHANM A,RIAZS,ALI I,et al.Structural and magnetic behavior evaluation of Mg-Tb ferrite/polypyrrole nanocomposites[J].Ceramics International,2015,41:651-656.
参考文献 38
LIUJ,ZHANGJ,LIY,et al.Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness[J].Materials Chemistry and Physics,2015,163:470-477.
参考文献 39
张文强,陈博,詹天卓,等.生物型吸波微粒的制备[J].功能材料,2009,40(5):826-829.
参考文献 40
MARINSJ A,SOARESB G,BARUDH S,et al. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material[J]. Materials Science and Engineering C,2013,33(7):3994-4001.
参考文献 41
李诗瑢.碳纤维/钴铁氧体纳米复合吸波材料的制备与研究[D].西南科技大学,2014.
参考文献 42
OLSSONR T,SAMIRM A S A,SALAZAR-ALVAREZG,et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J].Nature Nanotechnology,2010,5(8):584-588.
参考文献 43
徐长妍,赵雨晴,姬安,等.生物基碳纳米纤维负载钴铁氧体吸波材料及其制备方法:CN201510755133[P].2016-04.
目录 contents

    摘要

    简单介绍了铁氧体吸波材料的吸波机理,并详细阐述了近年来单一铁氧体、碳基铁氧体、聚合物/铁氧体、生物基铁氧体复合材料的研究成果。指明未来铁氧体吸波材料将以“薄、轻、宽、强”为目标,朝着结构多样化、成分复合化、各组分机理协同化、吸波频段自适应可调化及环保化方向发展。

    Abstract

    The microwave absorbing mechanism of ferrite materials was briefly introduced,and the latest research achievements of pure ferrites,carbon-based ferrite composites,ferrite/polymer composites and biology-based ferrite composites were introduced in detail.The developmental directions of ferrite microwave absorbing composites should be focused on the diversity of microstructures,composition of multi-components,synergization of different mechanisms among all composites,adjustable absorption bandwidth of self-driven and the environment friendly in future for the aim of thinner,lighter,wider absorption bandwidth and stronger absorption intensity.

  • 0 引言

    随着电子信息技术的发展,电磁波广泛存在于人们的日常生活中,过高的电磁辐射所形成的电磁污染,对人体健康有着严重的危害,已成为继水污染、噪音污染以及空气污染之后的第四大污染[1,2]。此外,在军事领域内雷达仍然是现代战争中搜寻目标的重要技术之一,研制能高效吸收电磁波的吸波材料是提高武器系统生存的有效途[3]。因此,吸波材料在民用和军事领域上都有着广泛的应用前景。

    吸波材料主要是通过材料的介质损耗使电磁波在材料内部以热能的形式消耗掉,或使电磁波因多次反射而干涉相消,达到吸收和衰减投射到物体内部电磁波的目的。性能较好的吸波材料应具备优良的阻抗匹配特性和衰减特性,阻抗匹配特性要求材料表面的相对磁导率和相对介电常数相近,从而可减少入射电磁波的反射,使其尽可能进入材料内部而发生损耗;衰减特性则使进入材料内部的电磁波因介质损耗而迅速地被吸[4]。此外,较高应用价值的吸波材料还应具有厚度薄、质量轻、吸收频带宽和吸波能力强等特点,并兼具良好的力学性能、环境适应性、化学稳定性,以及加工、使用方便等综合性能。

    铁氧体吸波材料作为应用较早且广泛使用的一种吸波材料,是由氧化铁与其他第八主族或稀土元素氧化物所形成的磁性材料,主要通过自极化、磁滞损耗、畴壁共振及自然共振等效应吸收损耗入射电磁波,根据晶体结构的不同可分为尖晶石型、磁铅石型和石榴石[5,6,7]。铁氧体吸波材料具有吸收损耗强、抗磨蚀、涂层薄、价格便宜等诸多优点,但其综合性能无法同时满足“薄、轻、宽、强”的要求,为克服铁氧体吸收频带较窄、密度较大、热稳定性差等缺点,目前关于提高铁氧体吸波材料综合性能方面的研究主要集中在纳米化、纤维化、铁氧体中金属离子置换或掺杂、微观结构设计以及与碳材料、聚合物、生物材料有效复合等方面。本文主要介绍铁氧体吸波复合材料的研究进展。

  • 1 单一铁氧体吸波材料的研究进展

  • 1.1 铁氧体纳米化及其置换掺杂

    随着纳米技术的发展,纳米铁氧体材料在吸波领域掀起了新的风潮。由于纳米铁氧体粒径尺寸远小于雷达波的波长,在电磁场的辐射下具有量子尺寸效应、宏观量子隧道效应和界面效应等,导致材料粒子晶界振动加剧,使更多电磁能转化为热[8]。如HE[9]通过共沉淀法合成了具有明显超顺磁性的纳米Fe3O4磁流体,其最大饱和磁化强度为43.4 emu/g,由于纳米尺寸效应和自身的磁流体性质,与水泥复合制备的吸波材料显示出优异的吸波性能。此外,在纳米铁氧体的基础上研究者用不同元素如Mn、Fe、Co、Ni、Zn、Mg等分别取代铁氧体中的部分铁离子或向铁氧体中掺杂稀土元素时发现,不同的元素在铁氧体晶格中占据不同的位置导致其磁各向异性场、饱和磁化强度、电阻率、矫顽力和自然共振频率改变,可以有效调节纳米铁氧体的电磁参数,控制电磁波吸收率。

    WIDANARTO[10]通过X射线衍射(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等研究了Nd3+置换钡铁氧体中三价铁离子时,对钡铁氧体微观结构、形貌、磁性能、电磁波损耗的影响,结果发现未掺杂Nd3+的钡铁氧体为六边形BaFe12O19或菱形BaFe2O4,掺杂Nd3+后的钡铁氧体为一种新型六边形晶相Ba6Nd2Fe4O15,其饱和磁化强度和微波反射损耗均有所提高。YANG[11]研究了La、Ce、Y掺杂CoRExFe2−xO4(RE=La、Ce、Y,x=0.05~0.25)时复合吸波材料PANI/CoRExFe2−xO4的吸波性能,结果表明La掺杂的纳米复合材料的微波吸收性能优于Ce和Y掺杂,当CoRexFe2−xO4中La含量为7.5%,即x=0.15时,其电导率为0.833 S/cm,吸波性能最优。SADIQ[12]利用溶胶凝胶自组装法制备了X-型六角晶相铁氧体Sr1.96RE0.04Co2Fe27.80Mn0.2O46(RE=Ce、Gd、Nd、La、Sm),并分析了Nd、La、Ce、Gd、Sm分别掺杂铁氧体时对其电磁性能的影响,结果表明Gd掺杂的铁氧体与Nd、La、Ce、Sm分别掺杂铁氧体相比,具有更高的矫顽力和反射损耗值。

  • 1.2 铁氧体纤维

    铁氧体材料的吸波性能除依赖于自身元素性质及粒子尺寸外,还依赖于微观形貌,常见的铁氧体有针状、棒状、片状、球状及多孔状,其中片状铁氧体的吸波性能优于其他形状的铁氧体吸波剂,而纤维状铁氧体并不多见,因其独特的光、电、磁学性质,引起了广泛关注,近年来研究人员经过不断探索成功制备了铁氧体纳米纤维,大大提高了单一铁氧体吸波材料的综合性能。NA[13]采用静电纺丝法将PVA/Fe(NO3)3·9H2O经550 ℃热处理后成功制备得到直径在24~105 nm的α-Fe2O3纳米纤维,并通过振动探针式磁强计研究了纳米纤维的微观结构与其磁性之间的关系,发现α-Fe2O3纳米纤维的饱和磁化强度随纤维直径的增大而提高,当PVA含量为0.12 g/L时,α-Fe2O3纳米纤维的直径最大,饱和磁化强度也达到峰值26.2 A·m2/kg。XIANG[14]采用相同方法制备了Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3多铁性复合纤维,经研究发现NCZFO和BTO颗粒沿纤维轴向分布,可减小NCZFO颗粒之间的磁性耦合作用,有利于促进磁性颗粒的共振吸收,当NCZFO/(40mol%)BTO纤维涂层厚度为5 mm时,微波损耗反射峰位于15.7 GHz,最大反射损耗值为-65.6 dB,小于-10 dB的频带宽高达7.8 GHz。LIU[15]通过比较静电纺丝法制备的BaFe12O19普通纤维与共电纺丝法制备的BaFe12O19空心纤维的电磁参数发现,共电纺丝法制备BaFe12O19空心纤维的矫顽力远小于静电纺丝法制备的普通纤维,展现出更强的软磁特性和更高的饱和磁化强度;且空心结构还可改善BaFe12O19纤维的阻抗匹配,进一步提高铁氧体材料的吸波性能,因此共电纺丝法制备的铁氧体空心纤维可进一步优化其吸波性能。

    由此可见,纳米铁氧体的量子尺寸效应、稀土铁氧体较高的饱和磁化强度以及空心纤维特殊的光、电、磁学效应,可有效改善铁氧体材料的电磁学性能,使新型铁氧体的吸波性能相较于传统铁氧体而言得到了极大提高。

  • 2 碳基铁氧体吸波复合材料的研究进展

    碳系材料以其独特的力、热、光、电特性一直备受关注,现阶段石墨烯、碳纳米管、碳纤维等新型碳材料已成为吸波领域的研究重点。不可回避的是,单一碳系材料的磁损耗欠佳,因此将碳系材料与铁氧体复合制备吸波材料,可使铁氧体的磁损耗与碳系材料的介电损耗形成优势互补以提升材料的吸波性能。但传统复合材料在制备过程中的粘黏团聚作用所致的材料复合不均现象使得碳基铁氧体复合材料吸波性能的提升有限。近年来,通过改进制备技术,利用化学键、库伦静电力、添加吸附层介质等手段将铁氧体均匀复合在碳系材料表面,可有效改善铁氧体与碳系材料的复合结构而进一步优化其吸波性能。

  • 2.1 铁氧体/碳纳米管复合吸波材料

    碳纳米管是由二维碳原子片层绕中心轴按一定角度螺旋卷曲而成的无缝管状结构,由于量子尺寸效应和特殊的电子运动形式可表现出金属和半导体特性,在交变电磁场的作用下可等效为偶极子而产生耗散电流,使得电磁波能量以热能形式被损[16]。将铁氧体均匀沉积在碳纳米管表面制备得到相应的复合材料,使其各自的优异性能形成优势互补是近年来铁氧体/碳纳米管复合材料的研究热点之一。SHU[17]采用一步溶剂热法制备了MWCNTs/ZnFe2O4复合材料,通过对其形貌、结构、电磁性能进行研究发现,经浓硝酸热处理后的MWCNTs表面具有大量含氧基团及缺陷空隙,可以有效吸附溶液中的Fe3+、Zn2+,进而使所形成的ZnFe2O4纳米粒子均匀沉积于MWCNTs表面;此外,ZnFe2O4颗粒尺寸和MWCNTs管径长度均会影响复合材料的电磁波吸收性能,厚度仅为1.5 mm的MWCNTs/ZnFe2O4复合材料在13.4 GHz处具有最小反射损耗值-55.5 dB。BIBI[18]通过溶液共混法制备了Cu0.25Ni0.25Zn0.5Fe2O4/MWCNTs复合材料,并研究了8.2~12.2 GHz频段内复合材料的吸波性能;发现Cu0.25Ni0.25Zn0.5Fe2O4/MWCNTs具有优异的阻抗匹配和界面极化性质,加之三维网络结构所形成的多重散射和反射,复合材料表现出优异的吸波特性,在10.2 GHz频率处的最大反射损耗值可达到-37.7 dB。

    气凝胶碳纳米管是近年来发展起来的一种结构可控的新型低密度纳米多孔材料,JIA[19]利用原位生长法制备了气凝胶碳纳米管/Fe3O4复合材料,其中气凝胶碳纳米管作为基本结构体,铁氧体在碳纳米管上的原位生长使其有效连接成磁性泡沫整体结构,基于碳纳米管的介电损耗、Fe3O4粒子的磁损耗以及网络泡沫结构的多重散射、反射作用,复合材料可在较宽的低频段内极大地提高对电磁波的吸收损耗能力。另外,这种高度疏松多孔的气凝胶结构由于能同时负载其他纳米颗粒,因而可应用于储能、生物催化等其他领域,在制备多功能吸波材料方面有着巨大的发展潜力。

  • 2.2 铁氧体/石墨烯复合吸波材料

    石墨烯具有特殊的二维平面结构、极大的比表面积、优异的导电性、较强的热稳定性以及密度小等诸多优点,有望成为一种新型吸波介电材料,为同时赋予石墨烯磁损耗特性,进一步提高其综合吸波性能,通过水热酸化法引入含氧基团、添加表面活性剂产生极性或经特殊结构设计等手段与铁氧体有效复合亦是近年来研究的热点之一。PENG[20]采用水热酸化法,在石墨烯表面引入大量—COOH和—OH极性基团以吸附Fe3+、Co2+、Ni2+和Mn2+,在石墨烯表面形成Fe(OH)3、Co(OH)2、Ni(OH)2和Mn(OH)2,并进一步转化成Co0.33Ni0.33Mn0.33Fe2O4与石墨烯复合形成复合吸波材料,通过XRD、XPS、FT-IR、RS、TEM等表征发现,此复合材料主要通过介电损耗、磁损耗、纳米效应以及良好的阻抗匹配衰减电磁波,此外石墨烯中残余的缺陷和基团可发生极化弛豫和电子偶极弛豫,能进一步提高电磁波的吸收,当吸收剂质量分数为20%且材料厚度为2 mm时,有效吸波频带宽达8.48 GHz。WU[21]利用PVP作为表面活性剂,使Fe3+吸附在rGO表面并通过自组装均匀沉积制备得到Fe3O4/rGO复合材料,通过对其形貌及电磁性能表征发现,rGO的加入不仅能够防止铁氧体纳米粒子的团聚,而且可有效提高复合材料的介电损耗。

    此外,特殊的物理结构也能使铁氧体与石墨烯有效复合,LIN[22]在含N,N-二甲基甲酰胺(DMF)、肼和巯基乙酸甲酯的溶液中对前驱体Bi2Fe4O9进行溶解-再结晶-还原过程,得到大量平均粒径约为500 nm的多孔Bi2Fe4O9微球,并利用多孔微球的粗糙界面将其较均匀组装在多层石墨烯表层形成了Bi2Fe4O9/rGO复合材料,当涂层厚度为2 mm时在13.8 GHz频率处的吸波损耗值为-71.88 dB,吸波性能远优于以简单形式复合的铁氧体/石墨烯复合材料。WANG[23]通过喷雾干燥法联合热溶剂法将CoFe2O4纳米粒子包覆于石墨烯片层内构成花式结构,不仅有效降低了石墨烯的团聚,增强CoFe2O4粒子与石墨烯之间的界面极化,还进一步改善了材料的阻抗匹配,厚度仅为2 mm的CoFe2O4@石墨烯复合材料在12.9 GHz频率处的反射损耗值为-42 dB,且RL<-10 dB的有效吸收带宽为4.59 GHz。ZHAO[24]在石墨烯气凝胶/BaFe12O19纳米复合材料上均匀沉积了非晶碳纳米管,得到一种具有3D网络结构的ACNT/GA/BF三元纳米复合材料,通过使入射电磁波在复合材料内多次反射和散射增强损耗,厚度为2 mm时材料在10.6 GHz处的最大反射损耗为-18.4 dB,且-10 dB以下的有效吸收带宽为3.3 GHz。

  • 2.3 铁氧体/碳纤维复合吸波材料

    碳纤维具有承载能力强、比表面积大、热导率高、耐腐蚀等特性,是一种优良的介电型材料。但碳纤维的电阻率约为10-2 Ω·cm,对入射微波具有较强的反射作用,因此只有通过改善其表面的阻抗匹配性质,才能使入射电磁波能够有效进入材料内部而发生损耗。GHOLAMPOOR[25]为了使Fe3O4纳米粒子能够均匀附着于碳纤维表面,将共沉淀法制备的Fe3O4置于含H+的电泳液中吸附上H+,然后在恒定电压条件下进行电泳,使带正电荷的Fe3O4向阴极移动,均匀包覆于碳纤维表面形成Fe3O4/CFs复合材料,该材料的饱和磁化强度和矫顽力分别为33.1 emu/g和168 Oe,当涂层厚度为2 mm时的最大吸波损耗值为-22.7 dB。ZHAN[26]通过化学修饰法在碳纤维表面包覆了一层聚多巴胺以吸附盐溶液中的Fe3+,在CFM表面均匀沉积Fe3O4纳米颗粒形成CFM/Fe3O4吸波复合材料,研究发现该材料的饱和磁化强度和矫顽力均随着Fe3O4含量的增加而增大,在8.2~12.4 GHz频段内的最大吸波损耗值为-62.6 dB,且在7~13 GHz频段内的反射损耗值均小于-25 dB。FARID[27]采用多步电泳沉积法在碳纤维表面沉积纳米Fe3O4颗粒,然后在Fe3O4@CFs上通过原位聚合聚苯胺成功制备出了PANI@Fe3O4@CFs三相异质复合吸波材料,此复合材料的饱和磁化强度随Fe3O4含量的减少由72.612 emu/g降至0.191 emu/g,当厚度为3 mm且PANI@Fe3O4@CFs的质量分数为5%时,复合材料的最大反射损耗值为-29 dB。

    综上可见,通过水热酸化引入极性含氧基团、利用化学修饰改善表面特性、借用电场效应或是设计特殊结构等,使得铁氧体颗粒紧密地复合于碳系材料表面上,可实现碳系材料的介电损耗和铁氧体的磁损耗发挥协同效应以提升吸波性能。

  • 3 铁氧体/聚合物吸波复合材料的研究进展

    有机聚合物环氧树脂、聚吡咯、聚噻吩、聚苯胺等是一类含有共轭体系的高分子材料,经化学或电化学掺杂可转变为半导体或导体,使其具有金属和无机导体的光电特性;另外,有机聚合物具备工艺灵活性和粘结性,在电磁波吸收剂制备方面表现出很强的结构设计适应[28]。聚合物与铁氧体复合,除了各自具有的电磁学特性可提高微波损耗外,特殊的结构设计也能有效提高材料的吸波性能。

  • 3.1 铁氧体/聚合物分层复合材料

    传统的铁氧体/聚合物复合材料是通过简单的物理混合制备得到,通常以环氧树脂等作为基体将铁氧体分散其中,由于聚合物改善了铁氧体的分散性和阻抗匹配特性,使其吸波性能在一定程度上有所增强。随后许多研究者充分利用聚合物容易成型的力学特性,采用模压、旋涂等工艺方法来制备双层或多层聚合物/铁氧体复合物,通过改变复合材料的结构、层数和各层厚度来改善其电磁匹配性质,从而增强材料的电磁波损耗能力。DU[29]以D-樟脑磺酸为诱导剂,通过界面聚合法制备了单、双层聚苯胺纳米纤维/Li0.35Zn0.3Fe2.35O4复合材料,通过比对单、双层复合材料的吸波性能发现,双层PANI/LZFO复合材料的阻抗匹配性质和界面效应均优于单层材料,当吸波层厚度为0.6 mm,匹配层厚度为1.4 mm时,双层复合材料的最大反射损耗可达到-57.5 dB。ZHANG[30]将静电纺丝法制备的尖晶石型铁氧体Ni0.8Co0.2Fe2O4纳米纤维经热处理后与一定量的石蜡混合做匹配层,并将Ni-C纳米纤维做为吸波层设计了一种双层吸波复合材料,研究发现当匹配层厚度为0.8 mm、吸波层厚度为1.5 mm时,微波损耗峰位于17.0 GHz,且最大反射损耗值高达-84.9 dB,材料的吸波性能远高于单层吸波材料及一般的双层吸波材料。

  • 3.2 铁氧体/聚合物手性复合材料

    手性吸波材料是近年来发展起来的一种新型吸波材料,能在电磁场作用下通过电场与磁场的交叉极化同时产生介电损耗和磁损耗。LI[31]利用有机聚合物的柔韧性通过添加结构诱导剂制备得到的螺旋手性聚合物具有介电性能强、质量轻、吸收频带宽等特点。然而,单纯的手性聚合材料磁损耗并不强,且热稳定性较差,将其与纳米铁氧体有效复合可以改善聚合物的不足之处,有效提高材料的吸波性能。XU[32]以L-樟脑磺酸为手性诱导剂,通过原位聚合法制备了聚苯胺PANI/钡铁氧体手性复合材料,由于PANI改善了BF与空气之间的阻抗匹配以及PANI的螺旋手性结构,使得复合材料在33.25 GHz处具有最大吸波损耗值-30.5 dB,且有效吸波带宽为12.8 GHz,可覆盖整个Ka波段。李涓碧[33]通过共沉淀法制备了手性PANI/CoFe2O4复合材料,并研究了手性PANI与CoFe2O4的质量比对材料电磁参数及吸波性能的影响。结果表明,当手性PANI与CoFe2O4的质量比为0.6时复合材料具有最佳吸波性能,涂层厚度为3.5 mm的复合材料电磁波吸收峰位于10.99 GHz,最大反射损耗值为-22.54 dB。杜咪咪[34]通过界面聚合法将手性聚苯胺以纤维形式复合在Li0.35Zn0.3Fe2.35O4上得到手性PANI/LZFO复合材料,并研究了LZFO对聚苯胺热稳定性的影响以及硅烷偶联剂改性LZFO对复合材料吸波性能的影响,结果表明改性后的LZFO有利于提高聚苯胺的复合效果和热稳定性,当PANI与LZFO的质量比为14且厚度为3.5 mm时,复合材料最大反射损耗值高达-57.5 dB。

  • 3.3 铁氧体/聚合物核壳复合材料

    以铁氧体为核、聚合物为壳制备的铁氧体/聚合物核壳结构复合吸波材料,不仅可以弥补铁氧体介电损耗弱、密度大等不足,同时核壳之间的空隙可为电磁波的折射和反射提供更多活性位点,增强电磁波吸收效果。SHEN[35]通过原位溶液聚合法制备了以磁性Ba0.9Nd0.1Cr0.5Fe11.5O19为核、导电N-甲基聚吡咯为壳层的BNCF@NMPy-co-Py复合吸波材料并对其电磁参数以及吸波性能进行了研究,结果表明该复合材料的饱和磁化强度较低,且导电性和吸波性能依赖于制备过程中的H3PO4浓度,当H3PO4浓度为0.3 mol/L时BNCF颗粒被NMPy-co-Py完全包覆,吸波性能最佳。此外,SHEN[36]还制备了Z型钡铁氧体/二氧化硅@聚吡咯核壳复合材料,在钡铁氧体的磁损耗、聚吡咯的介电损耗以及SiO2增透效果的协同作用下,当涂层厚度为2 mm、PPy含量为66.67%时,材料的最大反射损耗峰值为-19.65 dB,且小于-8 dB的吸收带宽可达到5.56 GHz。KHAN[37]通过共沉淀和原位聚合两步法制备了尖晶石型纳米Mg0.96Tb0.04Fe2O4@聚吡咯核壳复合材料,并利用XRD、FTIR、SEM、VSM研究了铽掺杂铁氧体对其电磁性能的影响,结果表明铽离子浓度较低时能成功进入铁氧体纳米晶格改变其电磁参数,复合材料的饱和磁化强度和矫顽力均随着Mg0.96Tb0.04Fe2O4含量的增加而增大,且Mg0.96Tb0.04Fe2O4与聚吡咯之间强烈的耦合效应有利于提高材料的吸波性能。LIU[38]通过控制聚合前苯胺单体的浓度,研究了壳层厚度对BaFe12O19@PANI复合材料吸波性能的影响,发现PANI壳层厚度对材料的阻抗匹配、电磁参数、介电损耗和界面损耗均有较大影响,且吸波性能和有效吸波带宽均随着PANI壳层厚度的增加而加强增宽,当壳层厚度在30~40 nm时复合材料具有最佳的吸波效果。

  • 4 生物基铁氧体复合材料的研究进展

    近年来,随着生物约束成形技术和微生物发酵技术的成熟和发展,细菌纤维素、木纤维素、微生物体等生物材料因其质量轻、价格低廉,同时具有生物可降解性和可再生性等众多优点被逐渐应用于吸波领域。虽然生物材料自身是一种电磁惰性材料,但通过催化碳化、化学镀、电镀等方法与磁性材料相复合,可以有效提高生物材料的介电性能和磁性能,制备出具有电磁损耗特性的生物基吸波材料。

    张文强[39]分别以螺旋藻、小球藻为模板,通过溶胶-凝胶法在藻体表面镀覆一层尖晶石型Fe3O4,制备出生物基铁氧体吸波微粒,通过对生物吸波微粒的形貌和电磁参数进行研究发现,基于螺旋藻的螺旋手性结构引起的交叉极化和铁氧体自身较强的磁损耗,磁性螺旋藻比磁性小球藻具有更好的吸波性能,涂层厚度为1.2 mm的螺旋藻/Fe3O4复合材料在12.4 GHz处的最大反射损耗值为-30 dB,且反射损耗低于-10 dB的有效带宽为10~16 GHz。MARINS[40]以未干燥的细菌纤维素膜为原料,经氯化铁浸渍、亚硫酸氢钠还原和碱处理后制备得到一种柔性的磁性膜,该磁性膜的饱和磁化强度约为60 emu/g,矫顽力约为15 Oe,其中Fe3O4纳米颗粒以团聚体的形式均匀地附着于BC纤维上,使细菌纤维素膜表现出较高的相对介电常数和电磁损耗。李诗瑢[41]将细菌纤维素经1 200 ℃碳化处理后得到具有优异介电性能和三维网络结构的碳化细菌纤维素(CBC),并通过溶剂热法在CBC表面沉积CoFe2O4纳米粒子以增强其磁损耗性能,当CBC/CoFe204复合材料厚度为2 mm、质量分数为10%时,在8.6 GHz处具有最大反射损耗值-45 dB。OLSSON[42]以冷冻干燥的细菌纤维素气凝胶为模板制备了钴铁氧体/细菌纤维素气凝胶复合材料,磁性纳米粒子沉积在细菌纤维素气凝胶的孔隙之中,不仅有效降低了复合材料的密度,同时还增强了材料的矫顽力和饱和磁化强度,这些均有利于提高材料的综合吸波性能。徐长妍[43]以木粉纤维素为载体,采用碳化法和溶剂热法制备了生物基碳纤维/钴铁氧体吸波复合材料,通过表征发现,碳化木纤维的网状结构在提高表层钴铁氧体分散性的同时能够赋予材料较好的介电损耗能力,与单一钴铁氧体相比,质量分数为10%的生物基碳纤维/钴铁氧体复合材料的最大反射损耗值可增大至-36.8 dB。现阶段,通过将铁氧体和生物材料相复合制备的生物基吸波复合材料不仅具有电磁波吸收性能,且同时兼具生物相容性、可降解性和资源循环可再生性,在吸波材料领域内展现出较好的环保优越性,逐步引起了众多学者的研究关注。

  • 5 结语与展望

    吸波材料在民用和军事领域都有着广泛的研究价值和应用前景。目前,铁氧体吸波材料在纳米化、复合化、结构设计等方面取得了大量研究新成果,但随着电磁辐射环境的日益严峻以及军事武器系统对隐身技术的严格要求,制备吸收能力强、吸波频带宽、厚度薄、质量轻、机械性能好、结构及化学性质稳定、环保性好的高性能铁氧体吸波复合材料是该领域的重要研究目标,未来研究的发展方向主要集中在以下几个方面。

    (1)铁氧体材料结构多样化。现有研究结果表明层状、纤维状、空心球状铁氧体不仅减小了材料的密度,而且因其结构效应可有效增强吸波性能。因此,今后需强化研究材料结构与吸波性能之间的构效关系,制备出新型特殊结构以进一步增强铁氧体材料的综合吸波性能。

    (2)探明铁氧体复合材料各组分间的协同吸波机理。铁氧体复合材料并非各组分吸波性能的简单叠加,许多情况下各组分之间的耦合机理尚未得到明确阐释。因此,在铁氧体吸波材料复合化设计中需充分将材料学与电磁学理论相结合,探明其中的复合吸收机制,为制备高性能铁氧体复合吸波材料奠定基础。

    (3)开发生物环保型和频段自适应调节型铁氧体吸波材料。在设计材料的吸波性能和理化性质的同时,必须兼顾材料对环境的影响,使未来铁氧体吸波材料向环境友好型方向发展。此外,现阶段雷达侦测往往同时具备多频段扫描能力,因此开发能够自适应调节吸波频段的铁氧体吸波材料亦具有重要的实际意义。

  • 参考文献

    • 1

      DHAMI A K.Study of electromagnetic radiation pollution in an Indian city[J].Environmental Monitoring Assessment,2012,184(11):6507-6512.

    • 2

      LING J Q,ZHAI W T,FENG W W,et al.Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding[J].ACS Applied Materials and Interfaces,2013,5(7):2677-2684.

    • 3

      KONG L,YIN X W,YUAN X Y,et al.Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites[J].Carbon,2014,73(73):185-193.

    • 4

      YIN X W,KONG L,ZHANG L T,et al.Electromagnetic properties of Si-C-N based ceramics and composites[J].International Materials Reviews,2014,6(59):326-355.

    • 5

      邓联文,黄生祥,刘鑫,等.聚苯乙烯-磁性吸收剂复合材料微波吸收特性研究[J].功能材料,2012,43(6):764-766.

    • 6

      黄啸谷,黄宝玉,张晶,等.MgxZn(1-x)Fe2O4铁氧体的制备及其电磁特性[J].南京工业大学学报(自然科学版),2013,35(1):47-51.

    • 7

      GAO Y,ZHAO Y,JIAO Q Z,et al.Microemulsion-based synthesis of porous Co-Ni ferrit nanorods and their magnetic properties[J].Journal of Alloys and Compounds,2013,555(13):95-100.

    • 8

      李保东,李巧玲,张存瑞,等.铁氧体复合吸波材料研究新进展[J].材料导报,2008,22:226-229.

    • 9

      HE Y,LU L,SUN K,et al.Electromagnetic wave absorbing cement-based composite using nano-Fe3O4 magnetic fluid as absorber[J].Cement and Concrete Composites,2018,92:1-6.

    • 10

      WIDANARTO W,ARDENTI E,GHOSHAL S K,et al.Significant reduction of saturation magnetization and microwave reflection loss in barium-natural ferrite via Nd3+ substitution[J].Journal of Magnetism and Magnetic Materials,2018,456:288-291.

    • 11

      YANG C,JIANG J,LIU X,et al.Rare earth ions doped polyanilin/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization hydrothermal route:preparation and microwave-absorbing properties[J].Journal of Magnetism and Magnetic Materials,2016,404(36):45-52.

    • 12

      SADIQ I,NASEEM S,ASHIQ M N,et al.Tunable microwave absorbing nano-material for X-band applications[J].Journal of Magnetism and Magnetic Materials,2016,401:63-69.

    • 13

      NA K H,KIM W T,PARK D C,et al.Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process[J].Thin Solid Films,2018,660:358-364.

    • 14

      XIANG J,HOU Z,ZHANG X,et al.Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers[J].Journal of Alloys and Compounds,2018,737:412-420.

    • 15

      LIU G,ZHANG Z,DANG F,et al.Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun[J].Journal of Magnetism and Magnetic Materials,2016,412:55-62.

    • 16

      Paulson S,Helser A,Nardelli MB,et al.Tunable resistance of a carbon nano-tube graphite interface[J].Science, 2001,290(5497):1742-1744.

    • 17

      SHU R,ZHANG G,WANG X,et al.Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high performance electromagnetic wave absorbers[J].Chemical Engineering Journal,2018,337:242-255.

    • 18

      BIBI M,ABBAS S M,AHMAD N,et al.Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J].Composites Part B,2017,114:139-148.

    • 19

      JIA X,WANG J,ZHU X,et al.Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbonnanotubes for microwave absorption[J].Journal of Alloys and Compounds,2017,697:138-146.

    • 20

      PENG J,PENG Z,ZHU Z,et al.Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method[J].Ceramics International,2018,44(17):21015-21026.

    • 21

      WU J,YE Z,LIU W,et al.The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J].Ceramics International,2017,43:13146-13153.

    • 22

      LIN Y,DAI J,YANG H,et al.Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J].Chemical Engineering Journal,2018,334:1740-1748.

    • 23

      WANG S,ZHAO Y,XUE H,et al.Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J].Materials Letters,2018,223:186-189.

    • 24

      ZHAO T,JI X,JIN W,et al.Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D aerogel/BaFe12O19 nanocomposite[J].Journal of Alloys and Compounds,2017,708:115-122.

    • 25

      GHOLAMPOOR M,MOVASSAGH-ALANAGH F,SALIMKHANI H,et al.Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method[J].Solid State Sciences,2017,64:51-61.

    • 26

      ZHAN Y,LONG Z,WAN X,et al.3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance[J].Applied Surface Science,2018,444:710-720.

    • 27

      FARID M A,AIDIN B K,AMIN A A.Three-phase PANI@nano-Fe3O4@CFs heterostructure:Fabrication,characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite[J].Composites Science and Technology,2017,150:65-78.

    • 28

      HUANG J,WAN M.Temperature and pressure dependence of conductivity of polyaniline systhesized by in situ doping polymer-ization in the precence of organic function acid as dopants[J].Solid State Communications,1998,108(4):255-259.

    • 29

      DU M,YAO Z,ZHOU J,et al.Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite[J].Synthetic Metals,2017,223:49-57.

    • 30

      ZHANG X,XIANG J,WU Z,et al.Enhanced absorbing properties and structural design of microwave absorbers based on Ni0.8Co0.2Fe2O4 nanofibers and Ni-C hybrid nanofibers[J].Journal of Alloys and Compounds,2018,764:691-700.

    • 31

      LI Y,MA L,GAN M,et al.Magnetic PANI controlled by morphology with enhanced microwave absorbing property[J].Materials Letters,2015,140:192-195.

    • 32

      XU F,MA L,GAN M,et al.Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties[J].Journal of Alloys and Compounds,2014,593(593):24-29.

    • 33

      李涓碧.手性(螺旋)基质与钴铁氧体复合物的制备及其电磁性能研究[D].金华:浙江师范大学,2015.

    • 34

      杜咪咪.手性聚苯胺/锂锌铁氧体复合材料的制备及电磁性能研究[D].南京:南京航空航天大学,2017.

    • 35

      SHEN J,FENG J,LI L,et al.Synthesis and excellent electromagnetic absorbing properties of copolymer (N-methylpyrrole-co-pyrrole) and Ba-Nd-Cr ferrite[J].Journal of Alloys and Compounds,2015,632:490-499.

    • 36

      SHEN J,CHEN K,LI L,et al.Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites[J].Journal of Alloys and Compounds,2014,615(9):488-495.

    • 37

      KHAN M A,RIAZ S,ALI I,et al.Structural and magnetic behavior evaluation of Mg-Tb ferrite/polypyrrole nanocomposites[J].Ceramics International,2015,41:651-656.

    • 38

      LIU J,ZHANG J,LI Y,et al.Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness[J].Materials Chemistry and Physics,2015,163:470-477.

    • 39

      张文强,陈博,詹天卓,等.生物型吸波微粒的制备[J].功能材料,2009,40(5):826-829.

    • 40

      MARINS J A,SOARES B G,BARUD H S,et al. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material[J]. Materials Science and Engineering C,2013,33(7):3994-4001.

    • 41

      李诗瑢.碳纤维/钴铁氧体纳米复合吸波材料的制备与研究[D].西南科技大学,2014.

    • 42

      OLSSON R T,SAMIR M A S A,SALAZAR-ALVAREZ G,et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J].Nature Nanotechnology,2010,5(8):584-588.

    • 43

      徐长妍,赵雨晴,姬安,等.生物基碳纳米纤维负载钴铁氧体吸波材料及其制备方法:CN201510755133[P].2016-04.

祁亚利

机 构:四川农业大学理学院,雅安 625014

Affiliation:College of Science,Sichuan Agricultural University,Ya’an 625014

角 色:第一作者

Role:First author

作者简介:祁亚利,1993年出生,硕士生,主要从事生物基吸波复合材料制备及性能研究

殷鹏飞

机 构:四川农业大学理学院,雅安 625014

Affiliation:College of Science,Sichuan Agricultural University,Ya’an 625014

角 色:通讯作者

Role:Corresponding author

邮 箱:yinpengfei@sicau.edu.cn

作者简介:殷鹏飞。E-mail:yinpengfei@sicau.edu.cn

张利民

机 构:西北工业大学理学院,空间应用物理与化学教育部重点实验室,西安 710072

Affiliation:Key Laboratory of Space Applied Physics and Chemistry,Ministry of Education, School of Science,Northwestern Polytechnical University,Xi’an 710072

李宁

机 构:西北工业大学理学院,空间应用物理与化学教育部重点实验室,西安 710072

Affiliation:Key Laboratory of Space Applied Physics and Chemistry,Ministry of Education, School of Science,Northwestern Polytechnical University,Xi’an 710072

image /
  • 参考文献

    • 1

      DHAMI A K.Study of electromagnetic radiation pollution in an Indian city[J].Environmental Monitoring Assessment,2012,184(11):6507-6512.

    • 2

      LING J Q,ZHAI W T,FENG W W,et al.Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding[J].ACS Applied Materials and Interfaces,2013,5(7):2677-2684.

    • 3

      KONG L,YIN X W,YUAN X Y,et al.Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites[J].Carbon,2014,73(73):185-193.

    • 4

      YIN X W,KONG L,ZHANG L T,et al.Electromagnetic properties of Si-C-N based ceramics and composites[J].International Materials Reviews,2014,6(59):326-355.

    • 5

      邓联文,黄生祥,刘鑫,等.聚苯乙烯-磁性吸收剂复合材料微波吸收特性研究[J].功能材料,2012,43(6):764-766.

    • 6

      黄啸谷,黄宝玉,张晶,等.MgxZn(1-x)Fe2O4铁氧体的制备及其电磁特性[J].南京工业大学学报(自然科学版),2013,35(1):47-51.

    • 7

      GAO Y,ZHAO Y,JIAO Q Z,et al.Microemulsion-based synthesis of porous Co-Ni ferrit nanorods and their magnetic properties[J].Journal of Alloys and Compounds,2013,555(13):95-100.

    • 8

      李保东,李巧玲,张存瑞,等.铁氧体复合吸波材料研究新进展[J].材料导报,2008,22:226-229.

    • 9

      HE Y,LU L,SUN K,et al.Electromagnetic wave absorbing cement-based composite using nano-Fe3O4 magnetic fluid as absorber[J].Cement and Concrete Composites,2018,92:1-6.

    • 10

      WIDANARTO W,ARDENTI E,GHOSHAL S K,et al.Significant reduction of saturation magnetization and microwave reflection loss in barium-natural ferrite via Nd3+ substitution[J].Journal of Magnetism and Magnetic Materials,2018,456:288-291.

    • 11

      YANG C,JIANG J,LIU X,et al.Rare earth ions doped polyanilin/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization hydrothermal route:preparation and microwave-absorbing properties[J].Journal of Magnetism and Magnetic Materials,2016,404(36):45-52.

    • 12

      SADIQ I,NASEEM S,ASHIQ M N,et al.Tunable microwave absorbing nano-material for X-band applications[J].Journal of Magnetism and Magnetic Materials,2016,401:63-69.

    • 13

      NA K H,KIM W T,PARK D C,et al.Fabrication and characterization of the magnetic ferrite nanofibers by electrospinning process[J].Thin Solid Films,2018,660:358-364.

    • 14

      XIANG J,HOU Z,ZHANG X,et al.Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers[J].Journal of Alloys and Compounds,2018,737:412-420.

    • 15

      LIU G,ZHANG Z,DANG F,et al.Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun[J].Journal of Magnetism and Magnetic Materials,2016,412:55-62.

    • 16

      Paulson S,Helser A,Nardelli MB,et al.Tunable resistance of a carbon nano-tube graphite interface[J].Science, 2001,290(5497):1742-1744.

    • 17

      SHU R,ZHANG G,WANG X,et al.Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high performance electromagnetic wave absorbers[J].Chemical Engineering Journal,2018,337:242-255.

    • 18

      BIBI M,ABBAS S M,AHMAD N,et al.Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J].Composites Part B,2017,114:139-148.

    • 19

      JIA X,WANG J,ZHU X,et al.Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbonnanotubes for microwave absorption[J].Journal of Alloys and Compounds,2017,697:138-146.

    • 20

      PENG J,PENG Z,ZHU Z,et al.Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method[J].Ceramics International,2018,44(17):21015-21026.

    • 21

      WU J,YE Z,LIU W,et al.The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J].Ceramics International,2017,43:13146-13153.

    • 22

      LIN Y,DAI J,YANG H,et al.Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J].Chemical Engineering Journal,2018,334:1740-1748.

    • 23

      WANG S,ZHAO Y,XUE H,et al.Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J].Materials Letters,2018,223:186-189.

    • 24

      ZHAO T,JI X,JIN W,et al.Synthesis and electromagnetic wave absorption property of amorphous carbon nanotube networks on a 3D aerogel/BaFe12O19 nanocomposite[J].Journal of Alloys and Compounds,2017,708:115-122.

    • 25

      GHOLAMPOOR M,MOVASSAGH-ALANAGH F,SALIMKHANI H,et al.Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method[J].Solid State Sciences,2017,64:51-61.

    • 26

      ZHAN Y,LONG Z,WAN X,et al.3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance[J].Applied Surface Science,2018,444:710-720.

    • 27

      FARID M A,AIDIN B K,AMIN A A.Three-phase PANI@nano-Fe3O4@CFs heterostructure:Fabrication,characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite[J].Composites Science and Technology,2017,150:65-78.

    • 28

      HUANG J,WAN M.Temperature and pressure dependence of conductivity of polyaniline systhesized by in situ doping polymer-ization in the precence of organic function acid as dopants[J].Solid State Communications,1998,108(4):255-259.

    • 29

      DU M,YAO Z,ZHOU J,et al.Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite[J].Synthetic Metals,2017,223:49-57.

    • 30

      ZHANG X,XIANG J,WU Z,et al.Enhanced absorbing properties and structural design of microwave absorbers based on Ni0.8Co0.2Fe2O4 nanofibers and Ni-C hybrid nanofibers[J].Journal of Alloys and Compounds,2018,764:691-700.

    • 31

      LI Y,MA L,GAN M,et al.Magnetic PANI controlled by morphology with enhanced microwave absorbing property[J].Materials Letters,2015,140:192-195.

    • 32

      XU F,MA L,GAN M,et al.Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties[J].Journal of Alloys and Compounds,2014,593(593):24-29.

    • 33

      李涓碧.手性(螺旋)基质与钴铁氧体复合物的制备及其电磁性能研究[D].金华:浙江师范大学,2015.

    • 34

      杜咪咪.手性聚苯胺/锂锌铁氧体复合材料的制备及电磁性能研究[D].南京:南京航空航天大学,2017.

    • 35

      SHEN J,FENG J,LI L,et al.Synthesis and excellent electromagnetic absorbing properties of copolymer (N-methylpyrrole-co-pyrrole) and Ba-Nd-Cr ferrite[J].Journal of Alloys and Compounds,2015,632:490-499.

    • 36

      SHEN J,CHEN K,LI L,et al.Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites[J].Journal of Alloys and Compounds,2014,615(9):488-495.

    • 37

      KHAN M A,RIAZ S,ALI I,et al.Structural and magnetic behavior evaluation of Mg-Tb ferrite/polypyrrole nanocomposites[J].Ceramics International,2015,41:651-656.

    • 38

      LIU J,ZHANG J,LI Y,et al.Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness[J].Materials Chemistry and Physics,2015,163:470-477.

    • 39

      张文强,陈博,詹天卓,等.生物型吸波微粒的制备[J].功能材料,2009,40(5):826-829.

    • 40

      MARINS J A,SOARES B G,BARUD H S,et al. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material[J]. Materials Science and Engineering C,2013,33(7):3994-4001.

    • 41

      李诗瑢.碳纤维/钴铁氧体纳米复合吸波材料的制备与研究[D].西南科技大学,2014.

    • 42

      OLSSON R T,SAMIR M A S A,SALAZAR-ALVAREZ G,et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J].Nature Nanotechnology,2010,5(8):584-588.

    • 43

      徐长妍,赵雨晴,姬安,等.生物基碳纳米纤维负载钴铁氧体吸波材料及其制备方法:CN201510755133[P].2016-04.