en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BREEDVELDG D,ROSETHR,SPARREVIKM,et al.Persistence of the deicing additive benzotriazole at an abandoned airport[J].Water Air & Soil Pollution Focus,2003,3(3):91-101.
参考文献 2
HILLE G,ZIERTENT A.Aerodynamic effects of aircraft ground deicing/anti-icing fluids[J].Journal of Aircraft, 2015,30(1):24-34.
参考文献 3
CORNELLJ S,PILLARDD A,HERNANDEZM T.Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J].Environmental Toxicology & Chemistry, 2010,19(6):1465-1472.
参考文献 4
TANGP,ZHANGR,CHENZ,et al.Effect of γ-ray irradiation on the microstructure and self-heating property of carbon fiber/polyethylene composite films[J].Composites Part A Applied Science & Manufacturing,2015,78:174-180.
参考文献 5
CORNELLJ S,PILLARDD A,HERNANDEZM T.Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J].Environmental Toxicology & Chemistry, 2000,19(6):1465-1472.
参考文献 6
CHIENA T,CHOS,JOSHIY,et al.Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers[J].Polymer,2014,55(26):6896-6905.
参考文献 7
KIMG M,NAEEMF,KIMH K,et al.Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites[J].Composite Structures,2016,136:162-170.
参考文献 8
MASB,FERNÁNDEZ-BLÁZQUEZJ P,DUVALJ,et al.Thermoset curing through Joule heating of nanocarbons for composite manufacture,repair and soldering[J].Carbon,2013,63(2):523-529.
参考文献 9
CHUK,YUND J,KIMD,et al.Study of electric heating effects on carbon nanotube polymer composites[J].Organic Electronics,2014,15(11):2734-2741.
参考文献 10
LEEJ,STEINI Y,KESSLERS S,et al.Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials[J].Acs Applied Materials & Interfaces,2015,7(16):8900.
参考文献 11
LEEJ,STEINI Y,DEVOEM E,et al.Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks[J].Applied Physics Letters,2015,106(5):535.
参考文献 12
GEIERM L,MCMORROWJ J,XUW,et al.Solution-processed carbon nanotube thin-film complementary static random access memory[J].Nature Nanotechnology,2015,10(11):944.
参考文献 13
NGUYENN,HAOA,PARKJ G,et al.In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current[J].Advanced Engineering Materials,2016,18(11):1906-1912.
参考文献 14
PAZJ,DÍAZJ,ROMERAL,et al.Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures[J].Composite Structures,2015,133:499-507.
参考文献 15
WILSONM.Structure and phase stability of novel ‘twisted’ crystal structures in carbon nanotubes[J].Chemical Physics Letters,2002,366(5):504-509.
参考文献 16
SUDHAJ D,SIVAKALAS,PATELK,et al.Development of electromagnetic shielding materials from the conductive blends of polystyrene polyaniline-clay nanocomposite[J].Composites Science & Technology,2010,69(3):358-364.
参考文献 17
HEPPLESTONES P,CIAVARELLAA M,JANKEC,et al.Size and temperature dependence of the specific heat capacity of carbon nanotubes[J].Surface Science,2006,600(18):3633-3636.
参考文献 18
MILLSA,FARIDM,SELMANJ R,et al.Thermal conductivity enhancement of phase change materials using a graphite matrix[J].Applied Thermal Engineering,2006,26(14/15):1652-1661.
目录 contents

    摘要

    采用碳纳米管薄膜(CNTF)作为电加热元件,研究碳纳米管薄膜对玻璃纤维增强树脂基复合材料结构表面的除冰性能,同时研究其电热性能。SEM发现样品内碳纳米管错综交缠、有较大孔隙率,厚度在14 µm左右。XRD表明CNTF样品为微晶结构,结晶度差且含有少量杂质。空气环境通电,升温速率和最高恒定温度随输入电压增大而迅速提高。输入电压为5 V时,前100 s升温速率为0.91 ℃/s,180 s时到达最高恒定温度95 ℃。在四次电热循环后,其表面电阻略有升高,均值从2.795 Ω到3.870 Ω。在9 V输入电压下,CNTF被迅速烧断,CNTF样品电流承载极限在1.8 A左右。利用其焦耳热性能进行除冰,质量为20 g冰块在树脂基玻璃纤维复合材料样品的表面脱落时间为240 s。表明CNTF在飞机除冰领域具有潜在应用价值。

    Abstract

    Carbon nanotube film (CNTF) was used as an electric heating element to study the deicing and electrothermal properties of carbon nanotubes(CNTF) on the surface of glass fiber resin matrix composites.SEM results show that the samples are intertwined by carbon nanotubes with large porosity.The thickness of CNTF is about 14 µm.The XDR results show that the samples were microcrystalline,poor crystallinity and small amount of impurity.CNTF is heated in air,the rate of heating and the maximum constant temperature increase rapidly with the increase of input voltage.When the input voltage is 5 V,the heating rate of the first 100 s is 0.91 ℃/s and reaches the maximum constant temperature 95 ℃ at 180 s.After four cycles of electrothermal cycling, the surface resistance increases slightly,the mean value is from 2.795 Ω to 3.870 Ω.The CNTF is rapidly burned off at 9 V input voltage.The current carrying limit of CNTF sample is 1.8 A.Deicing is carried out by using its Joule thermal property. The time of 20 g ice falling off the surface of resin matrix glass fiber composite is 240 s.It is proved that it is feasible to deicing by using the electrothermal characteristics of CNTF.

  • 0 引言

    0

    飞机结冰不仅严重降低飞机飞行性能,更会危及飞行安全,因此飞机除冰一直是航空研究的热点。除冰液除冰一直是主流除冰方式,但其却有经济性差、环境污染等缺点,相比而言,电热除冰有着实时性、除冰效率高、单次使用耗费低等优点。但传统的电热除冰的加热元件一般采用金属元件,因此存在功率高、质量大等不足之处,同时由于金属元件是刚性的难以应用于结构复杂的零件,所以这些因素限制了电热除冰在飞机上的应[1,2,3]。如今复合材料大量应用于飞机机体的制造中,如果在复合材料基体中构建一个导电网络利用其自身的焦耳热效应来除冰,那就可以进一步优化除冰技[4,5]。碳纳米管(CNT)具有良好电热和机械性能,从其问世以来便受到人们的关注,很快便成了利用自身焦耳热效应优化复合材料性能的理想材[6,7]。MAS[8]将质量分数为0.4%的CNT加入到环氧树脂基体中,成功实现了热固性树脂的固化、修复和焊接,同时发现碳纳米管可以降低反应峰值温度从而降低环氧树脂的固化温度。然而碳纳米管很难均匀分散在纤维增强复合材料中,且其电导率一般不超过10 S/m,这使得碳纳米管的焦耳热加热性能实际效果并不理[9]。利用化学气相沉积(CVD)可将碳纳米管制成大面积连续薄膜(CNTF),宏观性质的薄膜同样具有碳纳米管良好的电热性能从而可以在复合材料基体中搭建导电网[10,11]。且CNTF具有韧性强、自重轻[12]优点,因此研究利用CNTF电热性能来进行除冰对优化传统的飞机电热除冰技术而言有着重要意义。本文主要介绍了碳纳米管薄膜电热特性及其除冰性能。

  • 1 实验

    1

    采用高导电CNTF型号为SCNC-C(Tanfeng,SuZhou),分别将三份面积为20 mm×20 mm的CNTF记为样品123。对样品1用电子扫描电镜(S-4800,Hitachi),和X射线衍射仪(XPerPRO,PANalytical B.V)进行微观表征。将样品2用直径0.2 mm铜棒对两端绕卷,直到样品成10 mm×20 mm大小,两端接入直流稳压电源(HY3005MT,HYELEC)研究其电热性能,用温度传感器(E5CC-QX2ASM-802,OMRON)测CNTF样品中心温度。并分别在电热实验前后用四探针表面电阻测试仪(RTS-999,Sitanzhen)测其表面电阻。将样品3先如样品2同样方法用铜棒进行绕卷,然后将其固化于树脂基玻璃纤维复合材料(GFRP,玻璃纤维体积分数17%,25 mm×40 mm×3 mm)中做除冰性能测试。其中冰块样品质量20 g,后将其与上述GFRP样本在-10 ℃环境下冷冻2 h,使两者表面紧紧冻结在一起。图1为CNTF样品3固化在GFRP表面加热除冰示意图。

    图1
                            CNTF加热示意图

    图1 CNTF加热示意图

    Fig.1 CNTF heating diagram

  • 2 结果与讨论

    2
  • 2.1 CNTF微观形貌与内部结构

    2.1

    2为样品1表面和断面的SEM(加速电压10 kV,标尺2 µm)。由图2(a)知,CNTF内碳纳米管错乱交缠、无规则排列,孔隙率较高。这有利于复合材料固化时,树脂分子充分进入孔隙,这可以提高薄膜与树脂基体的结合力,因此如果CNTF固化在树脂基复合材料中不仅不会降低其机械性能,反而可以提高材料本身的韧[13]

    由图2(b)可知,CNTF样品厚度在14 µm左右。且CNTF平均克重只有2 g/m2,密度也远小于金属。所以将CNTF固化在树脂基复合材料中进行加热除冰也不会给材料额外增加很多载荷,这一点在产品性能要求极高的航空航天领域尤其重[14]

    html/yhclgy/184337/alternativeImage/8b1cb142-68f1-4607-ac81-70d6548008ba-F002.jpg

    (a) CNTF surface

    html/yhclgy/184337/alternativeImage/8b1cb142-68f1-4607-ac81-70d6548008ba-F003.jpg

    (b) CNTF cross-section

    图2 CNTF的SEM表征

    Fig.2 SEM characterization of CNTF

    3为样品1的XRD,可知CNT是纳米级混合型晶体,晶粒细小且结晶度较差。其2θ值与石墨相差无几,两者峰值(002)都在26°左右出现。CNT峰值偏左,说明其内含有非定型碳或是催化剂中的金属粒子等少量杂[15]

    图3
                            CNTF的XRD

    图3 CNTF的XRD

    Fig.3 XDR of CNTF

  • 2.2 CNTF的导电性能

    2.2

    4为样品2电热前的表面电阻分布,用四探针法如插图所示在样品2上均匀测量10个点。

    图4
                            CNTF表面电阻分布

    图4 CNTF表面电阻分布

    Fig.4 CNTF surface resistance distribution

    由图4知,样品表面电阻最高为2.962 Ω,最低为2.575 Ω,平均值为2.795 Ω。公式:

    ρ = ρ s × d
    (1)
    σ = 1 / ρ
    (2)

    式中, ρ 为样品的体积电阻率, ρ s 为样品的表面电阻率且在数值上等于样品表面电阻, d 为样品的厚度, σ 为样品的电导率。

    由公式(1)、(2),计算出薄膜的电导率在2.56×104 S/m左右,这要比直接将碳纳米管分散在复合材材料基体中来构建导电网络效果好得[16]

  • 2.3 CNTF电热特性

    2.3

    5为CNTF样品2在不同输入电压下的电热特性。每次电热循环中,每10 s记录一次数据,共持续10 min。

    图5
                            CNTF表面温度随时间变化值

    图5 CNTF表面温度随时间变化值

    Fig.5 CNTF surface temperature variation with time

    CNTF的热量产生和温度变化公式分别为:

    Q = I 2 R t
    (3)
    Δ t = Q / m c
    (4)

    式中, Q 为样品所产生的总热量, I 为通过其自身的电流, R 为样品的电阻, t 为通电时间, m 为样品的质量, c 为样品的比热容, Δ t 为样品温度的变化。

    从图5可知,随着输入电压的增加,薄膜升温能力显著增加。升温速率前期快后期慢,主原因是随着薄膜表面以及周围空气温度升高,导致空气对流速度也加快,同样热量消散的速率相应提高。当热量产生与其在空气消散速率平衡时温度恒定,从公式(3)、(4)知,虽然样品比热容随温度升高而有所增加,但样品质量很小,所以比热容的变化对样品温度变化的影响微乎其[17]。每条温度曲线在前100 s内基本达到恒定值。输入电压为5 V时取得最大恒定温度为95 ℃,所用时间180 s。

    6中给出了不同输入电压前100 s薄膜的升温速率。输入电压为5 V时,取得最大值为0.91 ℃/s。且在每次加热循环中发现电流随温度的增加而增加,输入电压为3 V时,电流增幅最大为13 mA。这是因为CNTF电阻与温度是负相关系数,温度升高时薄膜内自由电子增多所致。

    图6
                            CNTF电热性能/电流随温度增幅

    图6 CNTF电热性能/电流随温度增幅

    Fig.6 CNTF electrothermal performance /current increasewith temperature

  • 2.4 电热循环对CNTF导电性能影响

    2.4

    7为样品2在每次加热循环结束,冷却到室温23 ℃,对薄膜重新接入2 V电压并记录其电流值。其中插图为样品2在四次电热循环后的表面电阻。

    图7
                            CNTF导电性能随循环加热次数变化

    图7 CNTF导电性能随循环加热次数变化

    Fig.7 CNTF electrical conductivity changes withthe number of cyclic heating

    由图7可知,随着电热循环次数的增多,其电流从334 mA下降到了315 mA。表面电阻普遍增大,平均值从电热循环之前2.962 Ω增加到3.870 Ω。造成此种现象的原因是CNT表面受电热载荷的影响出现氧化现象,也可能是电流对薄膜内部的晶体结构有一定的击穿效应,从而造成了其导电性能的轻微下[18],但是下降幅度很小,不会从根本上影响CNTF的导电性能。

  • 2.5 CNTF的电热极限

    2.5

    1为样品2在更高输入电压(6、7、8 V)时的相关参数。当输入电压较图5更高时,样品电流迅速增大,同时升温能力也大幅度提高,最高恒定温度可达338 ℃。值得注意的是当输入电压为9 V时,电流值达到了1.836 A,此时出现温度还未升高但样品很快被烧断的现象,可见电流对薄膜有击穿作用,CNTF样品的电流承载极限在1.8 A左右。

    表1 更高电压值下CNTF的电热性能

    Tab.1 Electrothermal performance of CNTF

    VI/VI/ATmax/℃
    61.290221
    71.521263
    81.777338
    91.836Burnout
    表1
                    更高电压值下CNTF的电热性能
  • 2.6 CNTF的除冰性能

    2.6

    8为固化在树脂基玻璃纤维复合材料中的CNTF样品3的升温能力,从图可知固化在复合材料中的样品的升温能力明显低于其在空气中的升温能力,其原因是样品电热产生的能量很大一部分被树脂基玻璃纤维复合材料和模具吸收掉了。

    图8
                            CNTF的除冰

    图8 CNTF的除冰

    Fig.8 Deicing of CNT

    9为样品除冰示意图。将质量为20 g的冰块样品与完全固化的树脂基玻璃纤维样品表面冻结在一起,5 V的输入电压,功率为5.5 W,冰块在其表面脱落时间为240 s,这表明利用CNTF的电热特性进行除冰是可行的。

    图9
                            飞机机翼的除冰

    图9 飞机机翼的除冰

    Fig.9 Deicing of aircraft wing

  • 3 结论

    3

    (1) 碳纳米管薄膜(CNTF)厚度在14 µm左右,电导率约2.56×104 S/m,微观表征表明其有较大孔隙率且碳纳米管自由取向。CNTF样品电热性能良好,5 V直流电压下,最大升温速率可达0.91 ℃/s。

    (2)反复的电热循环会使CNTF表面电阻均值略微增加,幅度为0.908 Ω,但变化甚微不会从根本上降低其导电性能,总体而言CNTF的电热性能非常稳定,其样本电流承载极限在1.8 A左右。

    (3)将CNTF固化在树脂基复合材料中作为加热元件来除冰是可行的,5 V电压下,质量为20 g的冰块样品在树脂基玻璃纤维复合材料样品中的脱离时间为240 s。

  • 参考文献

    • 1

      BREEDVELD G D,ROSETH R,SPARREVIK M,et al.Persistence of the deicing additive benzotriazole at an abandoned airport[J].Water Air & Soil Pollution Focus,2003,3(3):91-101.

    • 2

      HILL E G,ZIERTEN T A.Aerodynamic effects of aircraft ground deicing/anti-icing fluids[J].Journal of Aircraft, 2015,30(1):24-34.

    • 3

      CORNELL J S,PILLARD D A,HERNANDEZ M T.Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J].Environmental Toxicology & Chemistry, 2010,19(6):1465-1472.

    • 4

      TANG P,ZHANG R,CHEN Z,et al.Effect of γ-ray irradiation on the microstructure and self-heating property of carbon fiber/polyethylene composite films[J].Composites Part A Applied Science & Manufacturing,2015,78:174-180.

    • 5

      CORNELL J S,PILLARD D A,HERNANDEZ M T.Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J].Environmental Toxicology & Chemistry, 2000,19(6):1465-1472.

    • 6

      CHIEN A T,CHO S,JOSHI Y,et al.Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers[J].Polymer,2014,55(26):6896-6905.

    • 7

      KIM G M,NAEEM F,KIM H K,et al.Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites[J].Composite Structures,2016,136:162-170.

    • 8

      MAS B,FERNÁNDEZ-BLÁZQUEZ J P,DUVAL J,et al.Thermoset curing through Joule heating of nanocarbons for composite manufacture,repair and soldering[J].Carbon,2013,63(2):523-529.

    • 9

      CHU K,YUN D J,KIM D,et al.Study of electric heating effects on carbon nanotube polymer composites[J].Organic Electronics,2014,15(11):2734-2741.

    • 10

      LEE J,STEIN I Y,KESSLER S S,et al.Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials[J].Acs Applied Materials & Interfaces,2015,7(16):8900.

    • 11

      LEE J,STEIN I Y,DEVOE M E,et al.Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks[J].Applied Physics Letters,2015,106(5):535.

    • 12

      GEIER M L,MCMORROW J J,XU W,et al.Solution-processed carbon nanotube thin-film complementary static random access memory[J].Nature Nanotechnology,2015,10(11):944.

    • 13

      NGUYEN N,HAO A,PARK J G,et al.In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current[J].Advanced Engineering Materials,2016,18(11):1906-1912.

    • 14

      PAZ J,DÍAZ J,ROMERA L,et al.Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures[J].Composite Structures,2015,133:499-507.

    • 15

      WILSON M.Structure and phase stability of novel ‘twisted’ crystal structures in carbon nanotubes[J].Chemical Physics Letters,2002,366(5):504-509.

    • 16

      SUDHA J D,SIVAKALA S,PATEL K,et al.Development of electromagnetic shielding materials from the conductive blends of polystyrene polyaniline-clay nanocomposite[J].Composites Science & Technology,2010,69(3):358-364.

    • 17

      HEPPLESTONE S P,CIAVARELLA A M,JANKE C,et al.Size and temperature dependence of the specific heat capacity of carbon nanotubes[J].Surface Science,2006,600(18):3633-3636.

    • 18

      MILLS A,FARID M,SELMAN J R,et al.Thermal conductivity enhancement of phase change materials using a graphite matrix[J].Applied Thermal Engineering,2006,26(14/15):1652-1661.

秦文峰

机 构:中国民航飞行学院航空工程学院,广汉 618307

Affiliation:Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307

角 色:第一作者

Role:First author

邮 箱:qwfgrh@126.com

第一作者简介:秦文峰,1976年出生,博士,教授,硕士生导师,研究方向为复合材料结构维修与表面技术。E-mail:qwfgrh@126.com

游文涛

机 构:中国民航飞行学院航空工程学院,广汉 618307

Affiliation:Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307

钟勉

机 构:中国民航飞行学院航空工程学院,广汉 618307

Affiliation:Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307

范宇航

机 构:中国民航飞行学院航空工程学院,广汉 618307

Affiliation:Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307

韩孝强

机 构:中国民航飞行学院航空工程学院,广汉 618307

Affiliation:Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307

html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image001.jpeg
html/yhclgy/184337/alternativeImage/8b1cb142-68f1-4607-ac81-70d6548008ba-F002.jpg
html/yhclgy/184337/alternativeImage/8b1cb142-68f1-4607-ac81-70d6548008ba-F003.jpg
html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image004.jpeg
html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image005.jpeg
html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image006.jpeg
html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image007.jpeg
html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image008.jpeg
VI/VI/ATmax/℃
61.290221
71.521263
81.777338
91.836Burnout
html/yhclgy/184337/media/8b1cb142-68f1-4607-ac81-70d6548008ba-image009.jpeg
html/yhclgy/184337/alternativeImage/8b1cb142-68f1-4607-ac81-70d6548008ba-F010.jpg

图1 CNTF加热示意图

Fig.1 CNTF heating diagram

图2 CNTF的SEM表征 -- (a) CNTF surface

Fig.2 SEM characterization of CNTF -- (a) CNTF surface

图2 CNTF的SEM表征 -- (b) CNTF cross-section

Fig.2 SEM characterization of CNTF -- (b) CNTF cross-section

图3 CNTF的XRD

Fig.3 XDR of CNTF

图4 CNTF表面电阻分布

Fig.4 CNTF surface resistance distribution

图5 CNTF表面温度随时间变化值

Fig.5 CNTF surface temperature variation with time

图6 CNTF电热性能/电流随温度增幅

Fig.6 CNTF electrothermal performance /current increasewith temperature

图7 CNTF导电性能随循环加热次数变化

Fig.7 CNTF electrical conductivity changes withthe number of cyclic heating

表1 更高电压值下CNTF的电热性能

Tab.1 Electrothermal performance of CNTF

图8 CNTF的除冰

Fig.8 Deicing of CNT

图9 飞机机翼的除冰

Fig.9 Deicing of aircraft wing

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      BREEDVELD G D,ROSETH R,SPARREVIK M,et al.Persistence of the deicing additive benzotriazole at an abandoned airport[J].Water Air & Soil Pollution Focus,2003,3(3):91-101.

    • 2

      HILL E G,ZIERTEN T A.Aerodynamic effects of aircraft ground deicing/anti-icing fluids[J].Journal of Aircraft, 2015,30(1):24-34.

    • 3

      CORNELL J S,PILLARD D A,HERNANDEZ M T.Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J].Environmental Toxicology & Chemistry, 2010,19(6):1465-1472.

    • 4

      TANG P,ZHANG R,CHEN Z,et al.Effect of γ-ray irradiation on the microstructure and self-heating property of carbon fiber/polyethylene composite films[J].Composites Part A Applied Science & Manufacturing,2015,78:174-180.

    • 5

      CORNELL J S,PILLARD D A,HERNANDEZ M T.Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J].Environmental Toxicology & Chemistry, 2000,19(6):1465-1472.

    • 6

      CHIEN A T,CHO S,JOSHI Y,et al.Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers[J].Polymer,2014,55(26):6896-6905.

    • 7

      KIM G M,NAEEM F,KIM H K,et al.Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites[J].Composite Structures,2016,136:162-170.

    • 8

      MAS B,FERNÁNDEZ-BLÁZQUEZ J P,DUVAL J,et al.Thermoset curing through Joule heating of nanocarbons for composite manufacture,repair and soldering[J].Carbon,2013,63(2):523-529.

    • 9

      CHU K,YUN D J,KIM D,et al.Study of electric heating effects on carbon nanotube polymer composites[J].Organic Electronics,2014,15(11):2734-2741.

    • 10

      LEE J,STEIN I Y,KESSLER S S,et al.Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials[J].Acs Applied Materials & Interfaces,2015,7(16):8900.

    • 11

      LEE J,STEIN I Y,DEVOE M E,et al.Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks[J].Applied Physics Letters,2015,106(5):535.

    • 12

      GEIER M L,MCMORROW J J,XU W,et al.Solution-processed carbon nanotube thin-film complementary static random access memory[J].Nature Nanotechnology,2015,10(11):944.

    • 13

      NGUYEN N,HAO A,PARK J G,et al.In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current[J].Advanced Engineering Materials,2016,18(11):1906-1912.

    • 14

      PAZ J,DÍAZ J,ROMERA L,et al.Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures[J].Composite Structures,2015,133:499-507.

    • 15

      WILSON M.Structure and phase stability of novel ‘twisted’ crystal structures in carbon nanotubes[J].Chemical Physics Letters,2002,366(5):504-509.

    • 16

      SUDHA J D,SIVAKALA S,PATEL K,et al.Development of electromagnetic shielding materials from the conductive blends of polystyrene polyaniline-clay nanocomposite[J].Composites Science & Technology,2010,69(3):358-364.

    • 17

      HEPPLESTONE S P,CIAVARELLA A M,JANKE C,et al.Size and temperature dependence of the specific heat capacity of carbon nanotubes[J].Surface Science,2006,600(18):3633-3636.

    • 18

      MILLS A,FARID M,SELMAN J R,et al.Thermal conductivity enhancement of phase change materials using a graphite matrix[J].Applied Thermal Engineering,2006,26(14/15):1652-1661.