面向环形编织的芯轴牵引轨迹生成与采样算法
作者:
作者单位:

1.浙江大学电气工程学院,杭州 310027;2.浙江大学金华研究院,金华 321000

中图分类号:

TS101.1

基金项目:

浙江省“尖兵”“领雁”研发攻关计划项目-智能制造与高端装备专项(2022C01237)


Mandrel Traction Trajectory Generation and Sampling Algorithm for Circular Braiding
Author:
Affiliation:

1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027;2.Jinhua Institute of Zhejiang University, Jinhua 321000

Fund Project:

Zhejiang Province "Elite" and "Leading Goose" R&D Plan Project - Intelligent Manufacturing and Advanced Equipment Special Project (2022C01237)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为提高环形编织精度,本文提出了一种根据芯轴形状以及目标编织角,生成芯轴牵引轨迹的算法。在轨迹生成阶段,考虑了暂态过程中收敛区长度与夹角的变化,提出了动态编织模型,提高了牵引轨迹的生成精度。在轨迹采样阶段,同时考虑轨迹的空间特征和速度特征,使用自适应采样算法,使采样轨迹尽可能接近原始轨迹,保证最终的编织精度。仿真与实物试验表明,针对复杂芯轴和非恒定目标编织角,本文算法具有更小的编织角误差。

    Abstract:

    In order to improve the accuracy of circular braiding, an algorithm to generate the mandrel traction trajectory according to the mandrel shape and the target braid angle was proposed. In the trajectory generation stage, the changes in the length and angle of the convergence zone in the transient process were considered, and a dynamic braiding model was proposed to improve the generation accuracy of the traction trajectory. In the trajectory sampling stage, the spatial characteristics and speed characteristics of the trajectory were considered at the same time, and an adaptive sampling algorithm was used to make the sampled trajectory as close to the original trajectory as possible to ensure the final braiding accuracy. Simulation and physical tests show that for complex mandrels and non-constant target braid angles, the algorithm in this paper has a smaller braid angle error.

    参考文献
    [1] 窦宏通, 王晓旭, 刘晓东, 等.三维异型纺织复合材料的预制体织造技术及材料力学性能研究进展[J]. 材料工程, 2023, 51(04): 88-102.DOU Hongtong, WANG Xiaoxu, LIU Xiaodong, et al. Research progress in preform weaving technology and material mechanical properties of three-dimensional special-shaped textile composites[J]. Journal of Materials Engineering, 2023, 51(04): 88-102.
    [2] MELENKA G W, CAREY J P. Development of a generalized analytical model for tubular braided-architecture composites[J]. Journal of Composite Materials, 2017, 51(28): 3861-3875.
    [3] DU G, POPPER P. Analysis of a circular braiding process for complex shapes[J]. The Journal of The Textile Institute, 1994, 85(3): 316-337.
    [4] NA W J, AHN H C, JEON S Y,et al. Prediction of the braid pattern on arbitrary-shaped mandrels using the minimum path condition[J]. Composites science and technology,2014, 91: 30-37.
    [5] VAN RAVENHORST J H, AKKERMAN R. A yarn interaction model for circular braiding[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 254-263.
    [6] HANS T, CICHOSZ J, BRAND M, et al. Finite element simulation of the braiding process for arbitrary mandrel shapes[J].Composites Part A:Applied Science and Manufacturing, 2015, 77: 124-132.
    [7] HAJRASOULIHA J,NEDOUSHAN R J,SHEIKHZADEH M, et al. Meso-macro numerical modeling of noncircular braided composite parts based on braiding process parameters[J]. Composite Structures, 2019, 224: 111065.
    [8] FOULADI A,JAFARI N R.Prediction and optimization of yarn path in braiding of mandrels with flat faces[J].Journal of Composite Materials,2018,52(5): 581-592.
    [9] MONNOT P, LEVESQUE J, LEBEL L L.Automated braiding of a complex aircraft fuselage frame using a non-circular braiding model[J].Composites Part A:Applied Science and Manufacturing, 2017, 102: 48-63.
    [10] 吴杰伟,孙志宏,郁强,等.等覆盖率变径编织方法[J].纺织学报, 2018, 39(04): 54-62.WU Jiewei, SUN Zhihong, YU Qiang,et al.Variable diameter braiding with constant cover factor[J].Journal of Textile Research,2018,39(04):54-62.
    [11] GONDRAN M,ABDIN Y,GENDREAU Y,et al. Automated braiding of non-axisymmetric structures using an iterative inverse solution with angle control[J].Composites Part A: Applied Science and Manufacturing,2021,143:106288.
    [12] LI Q, CHI X, JI C, et al. Off-center braiding process for complex composite preforms based on analysis of the geometric contour model of the mandrel[J]. Textile Research Journal, 2022, 92(23-24): 4845-4859.
    [13] GUYADER G, GABOR A, HAMELIN P. Analysis of 2D and 3D circular braiding processes: Modeling the interaction between the process parameters and the preform architecture[J]. Mechanism and Machine Theory, 2013, 69: 90-104.
    [14] CHI X,LI Q,YAN H,et al.Robot trajectory optimization control of braiding for three-dimensional complex preforms[J]. Journal of Engineered Fibers and Fabrics, 2021, 16:1-14.
    [15] HAN J, LEE J, YANG J. Development of a robot OLP system for the continuous motion control of a mandrel in the radial braiding process[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 3109-3117.
    [16] 陆利正, 何歆, 凌海雅, 等. 空间曲线的特征识别与高质量非均匀采样[J]. 计算机辅助设计与图形学学报, 2022, 34(01): 18-24.LU Lizheng, HE Xin, LING Haiya, et al. Feature recognition and high-quality nonuniform sampling for spatial curves[J].Journal of Computer-Aided Design and Computer Graphics, 2022, 34(01): 18-24.
    [17] KOBAYASHI S. Differential geometry of curves and surfaces[M]. Heidelberg: Springer, 2019.
    [18] VAN RAVENHORST J H, AKKERMAN R. Circular braiding take-up speed generation using inverse kinematics[J]. Composites Part A:Applied Science and Manufacturing,2014, 64:147-158.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

茅睿浩,樊臻,张森林.面向环形编织的芯轴牵引轨迹生成与采样算法[J].宇航材料工艺,2025,55(2):27-34.

复制
分享
文章指标
  • 点击次数:12
  • 下载次数: 134
  • HTML阅读次数: 4
  • 引用次数: 0
历史
  • 收稿日期:2023-11-13
  • 最后修改日期:2024-01-22
  • 录用日期:2024-01-29
  • 在线发布日期: 2025-05-12
文章二维码
《宇航材料工艺》2025年青年编委招募启事

关闭