AO-LSSVM在铣削铝合金表面粗糙度预测研究与应用
CSTR:
作者:
作者单位:

广东海洋大学机械工程学院,湛江 524088

作者简介:

通讯作者:

中图分类号:

TH161

基金项目:

国家自然科学基金资助项目(51375099);广东省教育厅特色创新类项目(2017KTSCX086);广东海洋大学科研启动费资助项目(E15168)


Research and Application of AO-LSSVM in Milling Aluminum Alloy Surface Roughness Prediction
Author:
Affiliation:

College of Mechanical and Power Engineering Guangdong Ocean University,Zhanjiang 524088

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高铣削7475铝合金表面粗糙度()的预测准确性和便捷性,本文基于天鹰优化器算法(AO)对最小二乘向量机(LSSVM)进行优化,以4个铣削参数作为输入值,作为输出值构建铣削铝合金预测模型,通过与粒子群(PSO)优化最小二乘支持向量机(LSSVM)和LSSVM 两种算法进行对比,采用灰色关联对铣削参数与表面粗糙度之间的相关性进行分析并通过GUI界面搭建预测系统。结果表明:基于AO-LSSVM的预测模型的预测误差为4.287 6%,拟合优度达到0.938 64,优于其他算法;每齿进给量与的相关性最大,灰色关联度值为0.764;通过GUI预测应用系统能实现高效、便捷、准确地预测值。

    Abstract:

    To further improve the accuracy and convenience of prediction on the surface roughness (Ra) of milled 7475 aluminum alloy, the least squares vector machine (LSSVM) was optimized based on the Aquila Optimizer algorithm (AO). The Ra prediction model of milled aluminum alloy was constructed with four milling parameters as the input values and Ra as the output value. This model was compared with two other algorithms, PSO-LSSVM and LSSVM. The correlation between the milling parameters and surface roughness was analyzed using gray correlation . The Ra prediction system was built through the GUI interface. The results show that the prediction error of the Ra prediction model based on AO-LSSVM is 4.2876%, and the goodness-of-fit reaches 0.93864, which is better than other algorithms. The correlation between feed per tooth and Ra is the largest, with a gray correlation value of 0.764. The GUI prediction application system can realize efficient, convenient, and accurate prediction of Ra values.

    参考文献
    相似文献
    引证文献
引用本文

吕亮亮,尹凝霞,仵景岳,麦青群,刘璨. AO-LSSVM在铣削铝合金表面粗糙度预测研究与应用[J].宇航材料工艺,2023,53(3):28-35.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-08
  • 最后修改日期:2022-10-27
  • 录用日期:2022-11-03
  • 在线发布日期: 2023-06-26
  • 出版日期:
文章二维码