斜纹机织热塑性复合材料低速冲击损伤及多尺度数值模拟研究
作者:
作者单位:

陕西科技大学机电工程学院,西安 710021

作者简介:

通讯作者:

中图分类号:

TB332

基金项目:

陕西省科技厅自然科学基金(2020JQ-701)


Low-Velocity Impact Damage and Multi-Scale Numerical Simulation of Twill Woven Thermoplastic Composites
Author:
Affiliation:

College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology,Xi'an 7710021

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机织复合材料在服役过程中不可避免地遭受低速冲击而引起内部损伤,导致材料性能减退。本文以斜纹机织热塑性复合材料为研究对象,通过实验与模拟相结合的方法研究其在低速冲击下的损伤行为。构建了微观、介观和宏观串行的多尺度模型对斜纹机织热塑性复合材料低速冲击损伤行为进行预测,并在5和10 J的冲击能量下,对其进行低速冲击试验以验证该多尺度模型的正确性。结果表明,微观、介观和宏观串行的多尺度模型能够准确地预测出斜纹机织热塑性复合材料的冲击损伤特性;在较大的冲击能量下,材料正面和背面均出现了损伤,且损伤以纤维断裂为主;低速冲击数值模拟所预测的力响应曲线与试验结果表现出良好的一致性,数值模拟损伤面积的误差在10%以内。

    Abstract:

    Woven composites inevitably suffer from internal damage caused by low-velocity impact (LVI) during service, resulting in degradation of material properties. In this paper, the damage behavior of twill woven thermoplastic composites (TWTC) at LVI was investigated by a combination of test and simulation methods. A micro, meso and macro serial multi-scale model was constructed to predict the damage behavior of TWTC at LVI, and tests were conducted under 5 and 10J impact energy to verify the correctness of the multi-scale model. The results showed that the micro, meso and macro serial multi-scale model could accurately predict the impact damage behavior of the TWTC. Furthermore, damage occurred on both the front and back of the material under the large impact energy, and the damage was mainly caused by fiber fracture. Besides, the force response curves predicted by the numerical simulation of LVI were in good agreement with the test results, and the error of the damage area of the numerical simulation was within 10%.

    参考文献
    相似文献
    引证文献
引用本文

章韫杰,高飒飒,王泽雨.斜纹机织热塑性复合材料低速冲击损伤及多尺度数值模拟研究[J].宇航材料工艺,2023,53(6):17-25.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-26
  • 最后修改日期:2022-12-29
  • 录用日期:2023-01-03
  • 在线发布日期: 2023-12-15
  • 出版日期: 2023-12-30
第五届航天高分子材料制备与应用工艺技术交流会 征文通知

关闭