机织复合材料变曲率薄壳件固化特性分析
作者:
作者单位:

1.天津工业大学机械工程学院,天津 300387;2.天津市现代机电装备技术重点实验室,天津 300387

中图分类号:

TB332

基金项目:

天津市自然科学基金重点项目(23JCZDJC00450)


Analysis of Curing Characteristics of Thin Shell Woven Composites With Variable Curvature
Author:
Affiliation:

1.School of Mechanical Engineering, Tiangong University, Tianjin 300387;2.Advanced Mechatronics Equipment Technology Tianjin Area Major Laboratory,Tianjin 300387

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [11]
  • | | |
  • 文章评论
    摘要:

    机织复合材料结构件在固化过程中会经历复杂的物理和化学变化,在固化成型脱模后产生变形,严重影响构件的成型精度。为了准确预测变形,本文首先建立了机织复合材料结构件固化变形的多尺度模型,后结合细观力学方法获得机织复合材料在固化过程中力学性能与热性能的演化。然后以变曲率薄壳件及含曲率的层合板构件作为研究对象,采用顺序热-力耦合的模拟方法,进一步分析了曲率、厚度参数对机织复合材料结构件固化特性的影响。结果表明,厚度较薄的机织复合材料结构件,固化温度梯度较低,固化程度比较均匀;曲率参数会对曲面机织件的固化变形产生一定的影响,且构件厚度越薄,曲率对变形的影响越显著;在变曲率薄壳件固化完成脱模后,同一曲率处,薄壳件经纬纱方向的最大位移大于厚度方向的最大位移。

    Abstract:

    Composite structures made of woven composites undergo both physical and chemical changes during the curing process, and will produce deformation after demolding, which significantly impacts the accuracy of the parts. In order to accurately predict the deformation, this paper first establishes a multiscale analysis model for the curing deformation of woven composites parts, and combines the meso-mechanical method to obtain the evolution of mechanical and thermal properties of woven composites during the curing process. Then, the effects of curvature and thickness parameters on the curing characteristics of woven composite parts were further analyzed using the sequential thermo-mechanical coupling analysis method to simulate the thin shell parts of variable curvature and laminates with different curvature.The results showed that woven composite parts with a lower thickness have a lower temperature gradient during curing and a more uniform curing degree. The curvature parameters influence on the curing deformation of woven parts, and the thinner the member thickness, the more significant the effect of curvature on deformation. After the thin shell parts of variable curvature was cured and demolded, the maximum displacement in the warp and weft directions is greater than that in the thickness direction at the same curvature.

    参考文献
    [1] 唐闻远,许英杰,孙勇毅,等.基于温度曲线优化的复合材料热压罐固化时间与固化质量协同控制[J].材料工程,2021,49(09):142-150.TANG Wenyuan, XU Yingjie, SUN Yongyi, et al. Simultaneous control of curing time and curing quality of auto-clave processed composite based on optimization of temperature profile[J]. Journal of Materials Engineering, 2021,49(09):142-150.
    [2] 卫宇璇,张明,刘佳,等.基于自动铺放技术的变刚度复合材料层合板固化变形特性[J].复合材料学报,2022,39(05):2460-2469.WEI Yuxuan,ZHANG Ming,LIU Jia,et al.Process-induced deformation characteristics of variable stiffness composite laminates based on automatic placement technology[J].Acta Materiae Compositae Sinica,2022,39(05):2460-2469.
    [3] BELLINI C, SORRENTINO L, POLINI W, et al. Spring-in analysis of CFRP thin laminates: numerical and experimental results[J]. Composite Structures, 2017,173:17-24.
    [4] 刘德博,湛利华,丁星星,等.模具表面状态对复合材料构件固化变形的影响[J].宇航材料工艺,2019,49(01):63-67.LIU Debo, ZHAN Lihua, DING Xingxing, et al. Influence of tool surface condition on cure-induced deformation of composite structure[J]. Aerospace Materials and Technology, 2019,49(01):63-67.
    [5] 乔巍,姚卫星.剪滞效应对复合材料固化变形影响的数值分析[J].中国机械工程,2021,32(05):611-616+623.QIAO Wei, YAO Weixing. Numerical analysis of shear-lag effect on curing deformation of composites[J]. China Mechanical Engineering, 2021,32(05):611-616,623.
    [6] 薛亚红,陈继刚,闫世程,等.二维机织复合材料力学分析中的周期性边界条件研究[J].纺织学报,2016,37(09):70-77.XUE Yahong, CHEN Jigang, YAN Shicheng, et al. Periodic boundary conditions for mechanical property analysis of 2-D woven fabric composite[J]. Journal of Textile Research, 2016,37(09):70-77.
    [7] YUAN Zhenyi, WANG Yongjun, YANG Guigeng, et al. Evolution of curing residual stresses in composite using multi-scale method[J]. Composites Part B: Engineering, 2018,155:49-61.
    [8] BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992,26(5):626-660.
    [9] ZHANG Guiming, WANG Jihui, NI Aiqing. Process-induced stress and deformation of variable-stiffness composite cylinders during curing[J]. Materials, 2019,12(2):259.
    [10] WANG Qi, LI Tong, YANG Xufeng, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020,135: 105913.
    [11] 唐邦铭.AS4碳纤维及复合材料[J]. 材料工程,1996,(02):30-31,35.TANG Bangming. AS4 Carbon fiber and composite materials[J]. Journal of Materials Engineering, 1996, (02):30-31+35.
    [12] 马云荣,贺继林,李栋,等.树脂基复合材料曲面结构件固化变形数值模拟[J].复合材料学报,2015,32(03):874-880.MA Yunrong, HE Jilin, LI Dong, et al. Numerical simulation of curing deformation of resin matrix composite curved structure[J]. Acta Materiae Compositae Sinica, 2015,32(03):874-880.
    [13] 闵荣,元振毅,王永军,等.基于黏弹性本构模型的热固性树脂基复合材料固化变形数值仿真模型[J].复合材料学报,2017,34(10):2254-2262.MIN Rong, YUAN Zhenyi, WANG Yongjun,et al. Numerical simulation for curing deformation of resin matrix thermosetting composites using viscoelastic constitutive model[J].Acta Materiae Compositae Sinica,2017,34(10):2254-2262.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚文标,牛雪娟.机织复合材料变曲率薄壳件固化特性分析[J].宇航材料工艺,2024,54(6):71-77.

复制
分享
文章指标
  • 点击次数:143
  • 下载次数: 2532
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2022-09-03
  • 最后修改日期:2022-11-12
  • 录用日期:2022-12-26
  • 在线发布日期: 2025-01-13
  • 出版日期: 2024-12-30
文章二维码