基于合成卷积层网络结构的焊缝X射线图片缺陷筛选技术
CSTR:
作者:
作者单位:

上海航天精密机械研究所,上海 201600

作者简介:

通讯作者:

中图分类号:

TG441.7

基金项目:

上海市浦江人才计划资助(20PJ1405000)


Defect Screening Technology of Weld X-ray Image Based on Synthetic Convolution Network Structure
Author:
Affiliation:

Shanghai Aerospace Precision Machinery Research Institute,Shanghai 201600

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    焊接技术应用于多个领域,近些年焊缝缺陷自动检测技术成为了重要的研究方向。本文基于VGG-16卷积神经网络的良好分类性能,提出一种SC-VGG网络结构,利用合成卷积层替换了单个卷积层,同时改进了训练过程中的损失函数,使网络结构更为关注焊缝缺陷类型预测的结果。经过实验测试,SC-VGG网络结构在训练过程中损失函数曲线可以很好的收敛,与其他网络结构相比对焊缝缺陷特征的提取性能更好,平均准确率和召回率达到了95.86%和98.33%,为焊缝缺陷自动化识别提供了算法支撑。

    Abstract:

    Welding technology has been applied in many fields. In recent years, automatic detection technology of weld defects has become an important research direction. In this paper, based on the good classification performance of vgg-16 convolutional neural network, a SC-VGG network structure is proposed, in which a single convolution layer is replaced by a composite convolution layer, and the loss function in the training process is improved, so that the network structure pays more attention to the results of prediction of weld defect type. Through the experimental test, SC-VGG network structure in the training process of loss function curve can be very good convergence. Compared with other network structure, SC-VGG network has a better weld defect feature extraction performance, the average accuracy and recall rate reached 95.86% and 98.33%, which provides algorithm support for automatic recognition of weld defects.

    参考文献
    相似文献
    引证文献
引用本文

刘骁佳,刘欢,王立群,王宇斐,危荃.基于合成卷积层网络结构的焊缝X射线图片缺陷筛选技术[J].宇航材料工艺,2021,51(Z1):81-86.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-11
  • 最后修改日期:2021-08-11
  • 录用日期:2021-08-26
  • 在线发布日期: 2021-09-29
  • 出版日期:
文章二维码