共熔法制备超高温陶瓷基复合材料
作者:
中图分类号:

TB33


Ultra-High Ceramic Matrix Composites Made by Eutectic Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    首次采用共熔法制备超高温陶瓷基复合材料,三个样品初始组分分别为ZrB2与鳞片石墨,ZrB2、TaB2、SiC及鳞片石墨,ZrB2、MoSi2与鳞片石墨。研究结果表明,共熔法制备的复合材料中各相分散均匀,产物中的石墨高度有序,石墨层间距分别为0.335 4、0.335 9与0.337 7 nm,且三者的微晶厚度分别为63.4、51.5及68.7 nm,拉曼光谱结果表明硼已经掺杂进入了石墨的网格结构。所制得的超高温陶瓷基复合材料样品中均存在一定的孔隙率,且制备的超高温陶瓷基复合材料的热导率较低。该方法为一种新型、快速、一步法制备超高温陶瓷基复合材料工艺。

    Abstract:

    Ultra-high temperature ceramic matrix composites were firstly made by eutectic method. The composites were made from ZrB2 and flake graphite, ZrB2, TaB2, SiC and flake graphite,or ZrB2, MoSi2and flake graphite, respectively. Results shows that different phases distribute uniformly in these composites, and the graphite phases in the composites were highly ordered. The d002 values of the graphite in the composites were 0.335 4, 0.335 9 and 0.337 7 nm, and the Lc values were 63.4, 51.5 and 68.7 nm, respectively. Boron had already doped into the carbon net, as indicated by the Raman analysis, and some amount of pores existed in the composites. Also, thermal conductivity coefficient of the composites were not very high. Eutectic method could be a promising method for making ultra-high temperature ceramic matrix composites.

    参考文献
    [1] WANG H, GUO Q, YANG J, et al. Microstructure and thermophysical properties of B4C/graphite composites containing substitutional boron[J]. Carbon, 2013,52(0):10-16.
    [2] WANG H, GUO Q, YANG J, et al. Microstructural evolution and oxidation resistance of polyacrylonitrile-based carbon fibers doped with boron by the decomposition of B4C[J]. Carbon, 2013,56(0):296-308.
    [3] 翟更太,宋永忠,宋进仁,等. 碳/陶复合密封材料的研究[J].宇航材料工艺,2001,31(6):17-19.
    [4] GUO Q, SONG J, LIU L, et al. Factors influencing oxidation resistance of B4C/C composites with self-healing properties[J]. Carbon, 1998,36(11):1597-1601.
    [5] GUO Q, SONG J, LIU L, et al. Relationship between oxidation resistance and structure of B4C-SiC/C composites with self-healing properties[J]. Carbon, 1999,37(1):33-40.
    [6] DING Y, DONG S, HUANG Z, et al. Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering[J]. Ceramics International, 2007,33(1):101-105.
    [7] SAVVATIMSKIY A I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963-2003)[J]. Carbon, 2005,43(6):1115-1142.
    [8] IWASHITA N, PARK C R, FUJIMOTO H, et al. Specification for a standard procedure of X-ray diffraction measurements on carbon materials[J]. Carbon, 2004,42(4):701-714.
    [9] ZHOU C. The effect of additives and processing conditions on properties of sintered mesocarbon microbeads[D]. University of Notre Dame, Doctor of Philosophy, 2007.
    [10] AMINI S, KALAANTARI H, GARAY J, et al. Growthof graphene and graphite nanocrystals from a molten phase[J]. J Mater. Sci., 2011,46(19):6255-63.
    [11] YANG J, LIU Z, WANG J, et al. The structure of MB2-MC-C (M=Zr, Hf, Ta) multi-phase ceramic coatingson graphite[J]. Journal of the European Ceramic Society, 2014,34:2895-2904.
    [12] 杨金华,刘占军,王立勇,等. TiB2/ZrB2-C自生复合材料涂层的制备与表征[J].新型炭材料,2016,31(2):188-198.
    [13] MONTEVERDE F, BELLOSI A, SCATTEIA L. Processing and properties of ultra-hightemperature ceramics for space applications[J]. Mater. Sci. Eng. A, 2008,485(1/2):415-21.
    [14] WUCHINA E, OPILA E, OPEKA M, et al. UHTCs:ultra-high temperature ceramic materials for extreme environment applications[J]. The Electrochemical Society Interface, 2007,16:30-36.
    [15] TIAN X, GUO X. SUN Z. et al. Oxidation resistance comparison of MoSi2 and B-modified MoSi2 coating on pure Mo prepared through pack cementation[J]. Materials and Corrosion, 2015,66(7):681-687.
    [16] 刘占军. 炭基面对等离子体材料的制备及其结构和性能研究[D]. 中国科学院山西煤炭化学研究所, 2008.
    [17] PIERSON H O. Carbides of group IV:titanium, zirconium, and hafniumcarbides[M]. Handbook of refractory carbides and nitrides. Westwood, NJ:William Andrew Publishing,1996:55-80.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨金华,刘占军,郭全贵.共熔法制备超高温陶瓷基复合材料[J].宇航材料工艺,2018,48(1):37-43.

复制
分享
文章指标
  • 点击次数:2440
  • 下载次数: 3016
  • HTML阅读次数: 2289
  • 引用次数: 0
历史
  • 收稿日期:2017-07-20
  • 在线发布日期: 2018-02-01
文章二维码
《宇航材料工艺》2025年青年编委招募启事

关闭