大型Mg-Gd-Y铸件成分、热处理优化和性能评价
作者:
作者单位:

1.清华大学,北京 100084;2.北京宇航系统工程研究所,北京 100076;3.上海航天精密机械研究所,上海 201600

作者简介:

孟德浩,1986年出生,工程师,主要从事箭体结构设计与镁合金研究工作。E-mail:dh_meng0015@163.com

中图分类号:

TB30


Optimization of Composition and Heat Treatment and Performance Evaluation of Large Mg-Gd-Y Castings
Author:
Affiliation:

1.Tsinghua University,Beijing 100084;2.Beijing Institute of Astronautical Systems Engineering,Beijing 100076;3.Shanghai Spaceflight Precision Machinery Institute,Shanghai 201600

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对大型砂型铸造镁合金铸件晶粒粗大、室温塑性较差的问题,模拟大型铸件的慢冷条件,通过成分优化、微观组织分析、热处理优化的方法研究了大型Mg-Gd-Y镁合金铸件室温强韧化的最优工艺参数。结果表明:Mg-6Gd-3Y-0.5Zr(GW63K)具有良好的综合性能,GW63K的最佳固溶处理参数为475 ℃/7 h+495 ℃/3 h,最佳时效处理参数为200 ℃/80 h,本体室温抗拉、屈服强度和延伸率依次达到了334.5 MPa、201.0 MPa和6.2%,具有良好的室温强韧性。

    Abstract:

    Large sand casting magnesium alloys were prone to coarse grains,resulting in poor elongation at room temperature.In order to solve the above problems, the slow cooling conditions of large castings was simulated and the optimum process parameters of room temperature strengthening and toughening of large Mg-Gd-Y magnesium alloy castings were studied by composition optimization,microstructure analysis and heat treatment optimization.It is found that Mg-6Gd-3Y-0.5Zr (GW63K) has good comprehensive performance,the optimum solution treatment parameters for GW63K are 475 ℃/7 h+495 ℃/3 h,and the optimum aging treatment parameters are 200 ℃/80 h,and the average tensile,yield strength and elongation at room temperature are 334.5 MPa,201.0 MPa和6.2%,respectively.This study provides a reference for the application of Mg-Gd-Y alloys on large castings.

    参考文献
    [1] KULEKCI M K.Magnesium and its alloys applications in automotive industry[J].The International Journal of Advanced Manufacturing Technology,2008,39(9-10):851-865.
    [2] MORDIKE B L,EBERT T.Magnesium:properties—applications—potential[J].Materials Science and Engineering: A,2001,302(1):37-45.
    [3] 龙乐豪,李平岐,秦旭东,等.我国航天运输系统60年发展回顾[J].宇航总体技术,2018,2(2):1-6.
    [4] 何庆彪,杜庆安,李浈.航天器复杂薄壁镁合金铸件低压铸造工艺研究[J].特种铸造及有色合金,2010,30(11):1033-1034.
    [5] DONG J,LIU W C, SONG X,et al.Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy[J].Materials Science and Engineering:A,2010,527(21-22):6053-6063.
    [6] ROKHLIN L L,NIKITINA N I.Recovery after ageing of Mg-Y and Mg-Gd alloys[J].Journal of Alloys and Compounds,1998,279(2):166-170.
    [7] VOSTRÝ P,SMOLA B,STULIKOVA I,et al.Microstructure evolution in isochronally heat treated Mg-Gd alloys[J].Physica Status Solidi(A),1999,175(2):491-500.
    [8] YAMADA K,OKUBO Y,SHIONO M,et al.Alloy development of high toughness Mg-Gd-Y-Zn-Zr alloys[J].Materials Transactions,2006,47(4):1066-1070.
    [9] WANG J,MENG J,ZHANG D,et al.Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys[J].Materials Science and Engineering:A,2007,456(1-2):78-84.
    [10] GAO L,CHEN R S,HAN E H.Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J].Journal of Alloys and Compounds,2009,481(1-2):379-384.
    [11] ANYANWU I A,KAMADO S,KOJIMA Y.Creep properties of Mg-Gd-Y-Zr alloys[J].Materials Transactions, 2001,42(7):1212-1218.
    [12] 王其龙.砂型铸造Mg-10Gd-3Y-Zr合金的组织和性能研究[D].上海:上海交通大学,2010.
    [13] 王有喜.镁、铝合金低压铸造成型工艺及力学性能研究[D].济南:山东理工大学, 2010.
    [14] 崔林林.ZM6镁合金大型薄壁砂型铸件数值模拟及缺陷分析[D].哈尔滨:哈尔滨理工大学,2012.
    [15] SHI-SING Z,PENG-HUI D,YAN-ZHU H.Effects of different two-stage solution heat treatment processes on microstructures and mechanical properties of 7A09 aluminum alloy[J].Light Alloy Fabrication Technology,2010(10):15.
    [16] ZHANG J,YUAN F,DU Y.Enhanced age-strengthening by two-step progressive solution treatment in an Mg-Zn-Al-Re alloy[J].Materials & Design,2013,52:332-336.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟德浩,李培杰,肖旅.大型Mg-Gd-Y铸件成分、热处理优化和性能评价[J].宇航材料工艺,2020,50(2):38-43.

复制
分享
文章指标
  • 点击次数:1692
  • 下载次数: 2697
  • HTML阅读次数: 430
  • 引用次数: 0
历史
  • 收稿日期:2019-08-13
  • 在线发布日期: 2020-04-03
文章二维码