硬质合金激光辅助切削刀具磨损预测研究
CSTR:
作者:
作者单位:

河南理工大学机械与动力工程学院,焦作 454003

作者简介:

通讯作者:

中图分类号:

TG506.5

基金项目:

河南省自然科学基金(202300410172);河南省高校基本科研业务费专项资金资助(NSFRF230409)


Research on Tool Wear Prediction of Laser-assisted Cutting of Cemented Carbide
Author:
Affiliation:

School of Mechanical and Power Engineering,Henan Polytechnic University,Jiaozuo 454003

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    硬质合金YG10作为典型的难加工材料,使用普通切削方法易造成严重刀具磨损。针对这一问题,提出采用激光辅助切削方法进行加工,通过对比普通切削与激光辅助切削两种加工方式下的刀具磨损情况,证明激光辅助切削可有效降低切削力,减小刀具磨损。建立了支持向量机回归模型(SVR)及交叉验证-支持向量机回归模型(CV-SVR),并对特定切削参数下的后刀面磨损量进行预测。结果表明:两种模型预测结果与实际值误差较小,特别是CV-SVR模型拟合精度更高,相较于SVR模型平均相对误差减小10%左右;采用CV优化后的SVR模型可以有效模拟刀具磨损中的非线性关系,并能为实际加工中刀具磨损情况的判断提供依据。

    Abstract:

    As a typical difficult-to-machine material, cemented carbide YG10 was prone to cause severe tool wear when common cutting method was used.In response to this problem,laser-assisted cutting method was proposed for machining.By comparing the tool wear conditions under the two machining methods of ordinary cutting and laser-assisted cutting,it was demonstrated that laser-assisted cutting could effectively reduce cutting force and tool wear.The support vector regression model (SVR) and cross-validation-support vector regression model(CV-SVR)were established,and the amount of flank wear under specific cutting conditions were predicted.The result shows that the prediction results of the two models have a small error with the actual values,in particular,the CV-SVR model has higher fitting accuracy,compared with the SVR model,the average relative error is reduces by about 10%.The CV-optimized SVR model can effectively simulate the nonlinear relationship in tool wear,and it can provide a basis for the judgment of tool wear in actual machining.

    参考文献
    相似文献
    引证文献
引用本文

魏攀,牛晶晶,霍衍浩,牛赢.硬质合金激光辅助切削刀具磨损预测研究[J].宇航材料工艺,2025,55(3):97-105.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-25
  • 最后修改日期:2025-06-12
  • 录用日期:2023-06-30
  • 在线发布日期: 2025-06-27
  • 出版日期:
文章二维码