摘要
研究了25 μm石墨膜在能量100 keV最大注量2.5×1
石墨膜是一类高导热碳材料,具有热导率高、化学稳定性好、轻质柔韧等特点,在多个行业的热管理领域得到应
国内外对石墨膜的制备和性能调控等方面的研究较为丰
通过哈尔滨工业大学空间环境材料行为与评价技术国家重点实验室КИФК综合辐照模拟器完成真空质子辐照实验,能量100 keV,通量2×1
拉曼光谱用于石墨类材料的结构表

图1 不同质子辐照注量下的拉曼光谱
Fig.1 Raman spectra under different proton irradiation fluence
理想条件下石墨烯是由无数规则的六元苯环构成,而石墨膜由单层或者多层石墨烯片堆叠而
(1) |
缺陷密度(nD)与LD的满足关系
(2) |
(3) |
质子辐照注量 /1 | ID/IG | LD/nm | nD/1 |
---|---|---|---|
0 | 0 | - | - |
1 | 0.084 | 35.2~46.8 | 1.36~2.41 |
5 | 0.328 | 17.8~23.7 | 5.32~9.42 |
25 | 0.950 | 10.5~13.9 | 15.4~27.3 |

图2 不同质子辐照注量下XRD谱图
Fig.2 XRD patterns of different proton irradiation fluences
(4) |
(5) |
质子辐照注量/1 | d002/nm | g/% |
---|---|---|
0 | 0.335 8 | 95.3 |
1 | 0.335 9 | 94.2 |
5 | 0.336 0 | 93.0 |
25 | 0.336 0 | 93.0 |

图3 晶面间距及石墨化度随辐照注量变化
Fig.3 Interplanar spacing and graphitization degree vary with irradiation fluence

图4 石墨膜不同注量质子辐照XPS全谱
Fig.4 XPS full spectrum of different proton irradiation fluence of graphite film
质子辐照注量/1 | 氧原子分数/% |
---|---|
0 | 2.59 |
1 | 0.83 |
5 | 3.30 |
25 | 11.2 |
未经辐照的石墨膜,氧元素原子分数为2.59%,碳元素原子分数为97.41%,这与石墨烯碳、氧元素XPS分析结果类

(a) 0 p/c

(b) 1×1

(c) 5×1

(d) 2.5×1
图5 不同注量辐照后石墨膜的C1s高分辨XPS谱图
Fig.5 High resolution C1s spectra of the graphite specimens after different fluence of proton radiation

图6 CC含量随质子辐照注量的变化曲线
Fig.6 Plot of CC content vs. proton radiation fluence
取12片Φ25 mm的石墨膜样品分三组,每4片为一组,开展25 ℃热扩散系数(α)测试;之后每组样品分别开展1×1

图7 不同注量质子辐照前后热扩散系数(25 ℃)
Fig.7 Thermal diffusivity (25 ℃) before and after irradiation with different proton fluences
辐照前三组样品的25 ℃热扩散系数平均值分别为:842、842、847 m
(1)石墨膜的晶面间距为0.335 83 nm,石墨化度为95.0%。100 keV质子辐照会破坏石墨膜表层六元苯环结构进而引发缺陷,随着辐照注量的增加,ID/IG比值增大,缺陷密度升高,片层间距增大,石墨化度降低,表层氧元素含量升高。
(2)25 μm石墨膜经过能量为100 keV注量为2.5×1
参考文献
HUANG H,MING X,WANG Y,et al. Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect[J].Carbon,2021,180:197-203. [百度学术]
ZHAO X,LI W,WANG Y,et al.Bioinspired modified graphite film with superb mechanical and thermoconductive properties[J].Carbon,2021,181: 40-47. [百度学术]
童叶龙,陶则超,李一凡,等.碳基高导热材料及其在航天器上的应用[J].中国空间科学技术,2022,42(1): 131-138. [百度学术]
TONG Y L, TAO Z C, LI Y F, et al. Carbon materials with high thermal conductivity andits applicationin spacecraft[J]. Chinese Space Science and Technology,2022,42(1):131-138. [百度学术]
王阳,高长春,孟庆亮,等.石墨膜导热带在空间遥感器低温光学上的应用[J].西北工业大学学报,2020,38(S1): 16-21. [百度学术]
WANG Y,GAO C C,MENG Q L,et al.Application of heat conduction band of graphite film in low temperature optics of space remote sensor[J].Journal of Northwestern Polytechnical University,2020,38(S1):16-21. [百度学术]
翁梦蔓,余文涛,卢小闯,等.基于聚酰亚胺的高导热石墨膜材料的研究进展[J].绝缘材料,2021,54(2):1-7. [百度学术]
WENG M M,YU W T,LU X C,et al.Research progress of high thermal conductivity graphite film based on polyimide[J]. Insulating Materials,2021,54(2): 1-7. [百度学术]
汪超翔,郭冲霄,刘悦,等.采用固体碳源制备石墨烯薄膜研究进展[J].材料导报,2022,32(16):108-116. [百度学术]
WANG C X,GUO C X,LIU Y,et al.Research progress on synthesizing graphene from solid carbon sources[J].Materials Reports,2022,32(16):108-116. [百度学术]
崔正威,袁观明,董志军,等.高定向导热碳材料的研究进展[J].中国材料进展,2020,39(6):450-457. [百度学术]
CUI Z W,YUAN G M,DONG Z J,et al.Research progress on carbon materials with high-oriented thermal conductivity[J]. Materials China,2020,39(6):450-457. [百度学术]
何端鹏,高鸿,邢焰,等.空间粒子辐射环境下石墨膜力学性能的演变规律[J].装备环境工程,2020,17(3): 15-20. [百度学术]
HE D P,GAO H,XING Y,et al.Evolution mechanism of tensile strength for graphite films under space particle irradiation environment[J]. Equipment Environmental Engineering,2020, 17(3):15-20. [百度学术]
张宁,张鑫,杨爱香,等.质子束辐照单层石墨烯的损伤效应[J]. 物理学报,2017,66(2):26103. [百度学术]
ZHANG N, ZHANG X, YANG A X, et al. Damage effects of proton beam irradiation on single layer graphene[J]. Acta Physica Sinica,2017,66(2):26103. [百度学术]
WANG W,WANG S,ZHANG S,et al.Effects of substrates on proton irradiation damage of graphene[J].RSC Advances,2020,1(2):126-1267. [百度学术]
NI Z,WANG Y,YU T,et al. Raman spectroscopy and imaging of graphene[J].Nano Research,2008,1(4):273-291. [百度学术]
吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3): 301-318. [百度学术]
WU J X,XU H,ZHANG J.Raman spectroscopy of graphene[J]. Acta Chimica Sinica,2014,72(3): 301-318. [百度学术]
ECKMANN A,FELTEN A,MISHCHENKO A,et al. Probing the nature of defects in graphene by Raman spectroscopy[J].Nano Letters,2012,12(8):3925-3930. [百度学术]
CANÇADO L G,JORIO A,FERREIRA E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J].Nano Letters,2011,11(8): 3190-3196. [百度学术]
FENG W,QIN M,LV P,et al.A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength[J]. Carbon,2014,77:1054-1064. [百度学术]
周玉.材料分析方法[M]. 第4版. 北京:机械工业出版社, 2020: 13. [百度学术]
ZHOU Y. Materials analysis methods[M].Fourth edition. Beijing:China Machinery Press,2020: 13. [百度学术]
IWASHITA N,IMAGAWA H,NISHIUMI W.Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products[J].Carbon,2013,61: 602-608. [百度学术]
徐鹏,刘忍肖.石墨烯粉体XPS定量测量的关键影响因素研究[J].中国标准化,2020(S1):310-315. [百度学术]
XU P,LIU R X.Research on the key factors influencing quantitative measurement of graphene powder using XPS[J]. China Standardization,2020(S1): 310-315. [百度学术]
NAGANO H,OHNISHI A,NAGASAKA Y,et al.Proton irradiation effects on thermophysical properties of high-thermal-conductivity graphite sheet for spacecraft application[J]. International Journal of Thermophysics,2006,27(1): 114-125. [百度学术]