摘要
通过共沉淀法制备花状NiCo2O4吸波材料,利用XRD、FTIR、BET、XPS和SEM等方式表征了样品成分及形貌特征,将不同煅烧温度(300、400、500、600、700 ℃)的产物利用矢量网络分析仪通过同轴测试法模拟了不同厚度下的吸波性能。结果表明:400 ℃煅烧样品在反射损耗值、吸收带宽以及样品厚度都表现出较好的性能,当厚度为1.5 mm时,在14.32 GHz处吸波材料达到最大的吸收损耗值为-43.71 dB,有效吸收带宽为4.48 GHz (12.08~16.56 GHz),可以预见镍钴基吸波材料具有很大的潜力。
关键词
随着科学技术的发展,电子设备的大量使用带来了不可避免的电磁辐射现象,不仅会影响精密仪器的操作,而且会对人体健康产生危
近年来,制备“薄”“轻”“宽”型的吸波材料是目前的研究重点,其中报道最多的是铁氧体与碳材料,将介电损耗与磁损耗材料相结合可以达到最佳的阻抗匹
矢量网络分析仪(VNA), N5224A型;X射线衍射仪(XRD),日本理学Rigaku Ultima Ⅳ型,扫描角度10 °~90 °;X射线光电子能谱仪(XPS), Thermo Scientific K-Alpha型;扫描电子显微镜(SEM),Zeiss Merlin Compact型;傅里叶变换红外吸收光谱仪(FTIR)。
配制溶液A:称取1.8 mmoL NiCl2·6H2O和1.2 mmoL CoCl2·6H2O溶于40 mL去离子水中,将其磁力搅拌30 min直至药品充分溶解备用;再配制溶液B:称取16 mmoL NH4Cl和5.5 mmoL NaOH溶于40 mL去离子水中,同样将其磁力搅拌30 min直至药品充分溶解备用;然后将溶液B缓慢加入溶液A中并不断进行磁力搅拌,使其混合均匀。再将其置于55 ℃烘箱中反应15 h;反应结束后待其冷却至室温后收集沉淀物,分别用去离子水和乙醇进行多次清洗,最后放入真空烘箱中60 ℃烘干,得到镍钴氢氧化物备用。
将上述制备的镍钴氢氧化物在空气气氛中于适当温度(300、400、500、600、700 ℃)退火2 h,待冷却到室温后取出产物研磨备用。
用XRD图谱对镍钴双金属氧化物的晶体结构分析,如

图1 不同煅烧温度下样品的XRD图谱
Fig.1 XRD patterns of samples calcined at different temperatures
用傅里叶变换红外吸收光谱仪分别对镍钴氢氧化物和400 ℃煅烧产物镍钴氧化物进行表征,如

图2 400 ℃煅烧前后的红外吸收峰
Fig.2 FTIR spectra before and after calcined at 400 ℃
通过全自动比表面及孔隙度分析仪(BET),77 K氮气吸脱附测定,将产物事先进行80 ℃脱气2 h,经过测量后花状镍钴氢氧化物和镍钴氧化物的比表面积分别为33.137

图3 400 ℃煅烧前后等温N2吸脱附曲线及孔径分布图
Fig.3 N2 absorption-desorption isotherms and pore size distribution of products before and after calcined at 400 ℃
最终合成的产物NiCo2O4中所含的元素及价态,如

图4 NiCo2O4样品的XPS图谱
Fig.4 The XPS spectrum of NiCo2O4 sample
注: (a)XPS全图谱;(b)O 1s光谱;(c)Ni 2p光谱;(d)Co 2p光谱。
由
利用扫描电子显微镜对样品的微观形貌进行表征,说明了该微球特殊的3D花朵状层次结构,由大量几乎垂直于球形表面的纳米片组成,纳米片像花瓣一样相互连接、交错,每个花瓣的表面都非常光滑。

图5 NiCo2O4样品的扫描电镜图(SEM)
Fig.5 SEM diagram of NiCo2O4 sample
注: (a)镍钴氢氧化物;(b)镍钴氢氧化物的局部放大图;(c)镍钴氧化物(400 ℃);(d)镍钴氧化物(400 ℃)的局部放大图。
吸波材料性能的好坏不仅在于材料要具有一定的强度和较小的密度,最主要的是具有较好的吸波性能,利用反射损耗(RL)来评价吸波材料的吸收能力,根据传输线理论,利用复介电常数和复磁导率来计算反射损耗值,通过此方法模拟计算出的结果与雷达吸波材料反射率测试方法定义的背衬金属板的模型原理是一致的。计算公式如
(1) |
(2) |
式中,Zin和Z0分别为吸波材料的标准输入阻抗和自由空间的阻抗;εr代表相对复介电常数;μr代表相对复磁导率;f是入射电磁波的频率;d是吸波材料的厚度;c是光速。一般认为当RL小于-10 dB时,该吸波材料就可以消耗90 %的入射电磁波,反射损耗低于-10 dB的范围就是有效吸收带宽记为fe,


图6 不同厚度下的NiCo2O4样品反射损耗值
Fig.6 RL values of NiCo2O4 sample under different thickness
注: (1)(a)-(c)是300 ℃煅烧样品的不同表征方式的反射损耗图;(d)-(f)是400 ℃煅烧样品的不同表征方式的反射损耗图;(g)-(i)是500 ℃煅烧样品的不同表征方式的反射损耗图;(j)-(l)是600 ℃煅烧样品的不同表征方式的反射损耗图。
为了进一步探讨煅烧温度对吸波材料损耗电磁波的机理影响,计算了复介电常数(εr=ε'-jε")、复磁导率(μr=μ'-jμ")以及损耗正切角(tanδε=ε"/ε',tanδμ=μ"/μ'),相关图像如


图7 NiCo2O4样品的复介电常数、复磁导率以及损耗正切角
Fig.7 The complex dielectric constant, complex magnetic permeability, and loss tangent angle of the NiCo2O4 sample
注: (a)复介电常数的实部;(b)复介电常数的虚部;(c)复磁导率的实部;(d)复磁导率的虚部;(e)介电损耗正切值;(f)磁损耗正切值。
复介电常数和复磁导率的实部与虚部分别反映了材料对电磁波的存储能力和消耗能力。
NiCo2O4材料主要是以介电损耗为主的,典型的介电损耗主要分为电导损耗和极化弛豫损耗,NiCo2O4样品中存在大量的氧空位和晶格缺陷,在改变电磁场的情况下,以此作为交变电磁场下的极化中心,诱导取向极化弛豫,从而增强偶极极化效应;此外由于吸波材料的纳米分层结构以及片状堆积的花状结构等都增强了材料的界面效应,根据Debye理论可以通过Cole-Cole半圆来进一步判断,表达如
(3) |
式中, εs为静态介电常数;ε∞为高频极限下的介电常数。如
(4) |
式中,f是入射电磁波的频率;μ0是真空磁导率;σ是电导率。如

图8 300~600 ℃样品的Cole-Cole半圆图
Fig.8 The Cole-Cole semicircles of 300-600 ℃ samples

图9 不同频率的C0值
Fig.9 Frequency dependence of C0 values
除了之前提及的各种因素会影响到材料的吸波性能外,阻抗匹配和衰减常数也是至关重要的,理想的吸波材料就是要达到阻抗匹配,使电磁波尽可能多地进入到材料内部而不发生反射,其次就需要较高的衰减常数,能够将入射到材料内部的电磁波充分衰减。满足以上几点要求才能达到最佳的吸收效果。利用以下公式计
(5) |
(6) |
式中,Z是阻抗匹配值,当Z=1时具有最佳的匹配效果,这时吸波材料处于零反射的理想状态,α是衰减常数,c是光速,f是入射波的频率。同时还可以通过λ/4理论来进一步研究吸波材料的厚度和最大屏蔽效能值之间的关系,当达到最大屏蔽效能时,吸波材料的厚度与频率之间有如下关
(n=1, 3, 5......) | (7) |
式中,tm、fm是吸波材料的厚度和对应于最大屏蔽效能值时的频率。
本文选用400 ℃煅烧样品的吸波数据来进行研究,见

图10 400 ℃的反射损耗图、λ/4匹配模型和阻抗匹配Z
Fig.10 The RL,the simulations of the absorber thickness under λ/4 conditions and the impedance matching characteristic for 400 ℃

图11 400 ℃样品在1.5 mm下的RL、Z和α
Fig.11 The RL,Z and α values of 400 ℃ samples under 1.5 mm
根据以上的分析,花状NiCo2O4具有较好的吸波性能。当电磁波入射到具有较好阻抗匹配的吸波材料表面时,大部分的电磁波都会进入到材料内部而不会发生反射。当电磁波入射到花状NiCo2O4内部时,则会发生多种损耗机理如

图12 花状NiCo2O4吸波材料损耗电磁波的机理
Fig.12 The EM wave absorption mechanisms of the flower-like NiCo2O4 absorber
吸波材料的阻抗匹配是影响电磁波耗散的重要因素,需要说明的是,吸收效率的实际差距并不像反射损耗值的差距那么大,因为-20 dB意味着吸收效率为99.0 %,-40 dB等于吸收效率为99.99 %,实际上,对入射电磁波有效吸收通常定义为-10 dB(吸收效率为90.0 %),然而达到-10 dB的吸收带宽是重要的评价指标。制备具有较大吸收带宽的材料依旧存在挑战:
(1)鉴于吸收效率与反射损耗值之间的不对等差距,制备具有较宽吸收带宽的吸波材料成为目前的研究重点,而不是一味地追求最大反射损耗值,同时也需要完善一下吸波效果的评判标准。
(2)本工作制备的花状结构NiCo2O4具有丰富的比表面积,有利于电磁波的反射和散射,使得增大材料的比表面积将是以后研究吸波材料发展的重点之一。
(3)本研究只是单一的NiCo2O4吸波材料,具有较高的介电常数,但磁导率较低不利于达到最佳的阻抗匹配效果,并且由于单一材料的物理属性其吸收带宽不会太大,所以在未来的研究中复合磁性较强的材料,互相匹配平衡,达到最佳的阻抗匹配,从而促进电磁波的损耗。
(4)本工作利用温和的共沉淀法制备NiCo2O4,工艺操作简单,有利于工厂化生产,为以后的大量推广做准备。
参考文献
HU J, SHEN Y, XU L, et al. Synthesis of urchin-like MnO2/reduced graphene oxide (RGO) composite and their wave-absorbing property [J]. Materials Research Express, 2019, 6(9):95002-95002. [百度学术]
LAN D, QIN M, LIU J, et al. Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications [J]. Chemical Engineering Journal, 2020, 382: 122797. [百度学术]
LAN D, GAO Z, ZHAO Z, et al. Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites [J]. Composites Communications, 2021, 26: 100767. [百度学术]
QIAO M, LEI X, MA Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres [J]. Chemical Engineering Journal, 2016, 304: 552-562. [百度学术]
QIN M, LIANG H, ZHAO X, et al. Glycine-assisted solution combustion synthesis of NiCo2O4 electromagnetic wave absorber with wide absorption bandwidth [J]. Ceramics International, 2020, 46(14): 22313-22320. [百度学术]
LI X, WANG L, YOU W, et al. Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units [J]. Nanoscale, 2019, 11(6): 2694-2702. [百度学术]
WU H J, QIN M, ZHANG L M. NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance [J]. Compos Part B-Eng, 2020, 182: 107620. [百度学术]
JIANG B, LUAN J, QIN S, et al. Fabrication of very effective ferroferric oxide and multiwalled carbon nanotubes@polyetherimide/poly(ether ether ketone) electromagnetic interference shielding composites [J]. Polymer Composites, 2020, 41(8): 3135-3143. [百度学术]
WU H, LAN D, LI B, et al. High-entropy alloy@air@Ni-NiO core-shell microspheres for electromagnetic absorption applications [J]. Composites Part B: Engineering, 2019, 179: 107524.1-107524. [百度学术]
HUANG L, LI J, WANG Z, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane [J]. Carbon, 2019, 143: 507-516. [百度学术]
XU J, SU D, BAO W, et al. Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage [J]. Journal of Alloys and Compounds, 2016, 684: 691-698. [百度学术]
MA C, WANG W, WANG Q, et al. Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance [J]. Journal of Colloid and Interface Science, 2021, 594(8): 604-620. [百度学术]
QIN M, LIANG H, ZHAO X, et al. Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity [J]. Journal of Colloid and Interface Science, 2020, 566: 347-356. [百度学术]
GUAN T, FANG L, LU Y, et al. A facile approach to synthesize 3D flower-like hierarchical NiCo layered double hydroxide microspheres and their enhanced adsorption capability [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 907-915. [百度学术]
CAI X, SHEN X, MA L, et al. Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor [J]. Chemical Engineering Journal, 2015, 268: 251-259. [百度学术]
TRIPATHI P K, LIU M, ZHAO Y, et al. Enlargement of uniform micropores in hierarchically ordered micro-mesoporous carbon for high level decontamination of bisphenol A [J].Journal of Materials Chemistry A, 2014, 2(22): 8534-8544. [百度学术]
HU J, SHEN Y, XU L, et al. Facile preparation of flower-like MnO2/reduced graphene oxide (RGO) nanocomposite and investigation of its microwave absorption performance [J]. Chemical Physics Letters, 2020, 739: 136953. [百度学术]
QIN M, LAN D, WU G, et al. Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption [J]. Applied Surface Science, 2020, 504: 144480. [百度学术]
LIU X, HUANG Y, ZHANG N, et al. Fabrication of carbon-doped ZnCo2O4 yolk-shell microspheres compounded with magnetic graphene for enhanced electromagnetic wave absorption performance [J]. Ceramics International, 2019, 45(16): 19720-19729. [百度学术]
DUAN F, ZHENG Y, LIU L, et al. Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures [J]. Materials Letters, 2010, 64(14): 1566-1569. [百度学术]
LIU J, LIANG H, WU H. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance [J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105760. [百度学术]
WU H, ZHAO Z, WU G. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption [J]. Journal of Colloid and Interface Science, 2020, 566: 21-32. [百度学术]
DONG S, TANG W, HU P, et al. Achieving excellent electromagnetic wave absorption capabilities by construction of mno nanorods on porous carbon composites derived from natural wood via a simple route [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11795-11805. [百度学术]
LIU Y, CHEN Z, XIE W, et al. In-situ growth and graphitization synthesis of porous Fe3O4/Carbon fiber composites derived from biomass as lightweight microwave absorber [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5318-5328. [百度学术]
ZHANG X J, LI S, WANG S W, et al. Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband [J]. The Journal of Physical Chemistry C, 2016, 120(38): 22019-22027. [百度学术]
LIU L Y, YANG S, HU H Y, et al. Lightweight and efficient microwave absorbing materials based on loofah sponge derived hierarchically porous carbons [J]. ACS Sustainable Chem. Eng., 2019, 7(1): 1228-1238. [百度学术]
WANG Y, DU Y, QIANG R, et al. Interfacially engineered sandwich-like rGO/Carbon microspheres/rGO composite as an efficient and durable microwave absorber [J]. Advanced Materials Interfaces, 2016, 3(7): 1500684. [百度学术]
SONG W L, CAO M S, FAN L Z, et al. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding [J]. Carbon, 2014, 77: 130-142. [百度学术]
DU Y, LIU W, QIANG R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites [J]. ACS Appl Mater Interfaces, 2014, 6(15): 12997-3006. [百度学术]
ZHANG Y, WANG X, CAO M. Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption [J]. Nano Research, 2018, 11(3): 1426-1436. [百度学术]
WEI S, WANG X, ZHANG B, et al. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance [J]. Chemical Engineering Journal, 2017, 314: 477-487. [百度学术]
XU Z, DU Y, LIU D, et al. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption [J]. ACS Appl Mater Interfaces, 2019, 11(4): 4268-4277. [百度学术]