High-entropy Ceramics: A New Strategy for Electromagnetic Wave Absorbing Materials
Author:
Affiliation:

1.Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of;Materials & Processing Technology,Beijing 100076;2.School of Materials Science and Engineering, Beihang University, Beijing 100191;3.Center for Integrated Computational Materials Engineering,International Research Institute for Multidisciplinary Science, Beihang University , Beijing 100191

Clc Number:

TM25

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The advancement of microwave technology has spurred the development of electromagnetic (EM) protection technology. Being capable of dissipating excess electromagnetic radiation in the form of heat, EM wave absorbing materials have gathered widespread attentions. Confronted with complex EM environment, it is of great significance to explore EM wave absorbing materials with both strong and broadband absorbing capacity within the frequency band of 1 to 18 GHz. At present, the design methods for EM wave absorbing materials mainly include nano-composite construction and doping modification. Through combining dielectric loss-type and magnetic loss-type nanomaterials, the dielectric and magnetic loss coupling can be achieved. However, complex preparation process, difficulty in accurately controlling the dispersion of nanofillers and poor high-temperature stability and resistance to oxidation are the main drawbacks for these types of materials. Ultra-high temperature ceramics (UHTCs) possess good thermal stability and resistance to oxidation, however, the poor impedance match makes it unsuitable for EM wave absorption. Through designing and preparing high-entropy ceramics containing magnetic components, strong and broadband absorbing capability can be achieved in UHTCs. The high-entropy design paradigm can simultaneously adjust the conductivity and enhance the magnetic loss capability, which opens a new window to tune the impedance match for dielectric materials with high conductivity.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 20,2021
  • Revised:February 12,2022
  • Adopted:February 16,2022
  • Online: April 20,2022
  • Published: April 30,2022