Characterization of Hot Flow Behavior of Haynes 282 Alloy Based on Artificial Neural Network and Its Finite Element Application
Author:
Affiliation:

1.Department of Mechatronics, Xijing University, Xi’an 710021;2.College of physics and Electronic Engineering, Xianyang Normal University,Xianyang 712000

Clc Number:

TG132.3

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, the true stress-strain data of Haynes 282 alloy were obtained by conducting isothermal compression tests on a thermal-mechanical simulator.Haynes 282 alloy shows typical dynamic recrystallization characteristic during the deformation process at elevated temperature.Moreover, the flow stress was quite sensitive to the thermodynamic parameters and represents complicated highly-nonlinear relationship with the thermodynamic parameters. In order to accurately describe and predict the true stress-strain relationship of Haynes 282 alloy, a back-propagation neural network was constructed by employing hot deformation parameters as the inputs, and employing flow stress as the output. The evaluation results of the constructed neural network show that the constructed neural network in this research can accurately characterize the hot flow behavior of Haynes 282 alloy. Accurate simulation of the hot flow behavior of Haynes 282 alloy is achieved by implanting the neural network into a finite element software in the form of material subroutine and constructing the finite element model of isothermal compression test.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 11,2020
  • Revised:March 04,2022
  • Adopted:February 18,2021
  • Online: April 20,2022
  • Published: April 30,2022