A Comparative Research on Test Methods for the Compressive Properties of Unidirectional Carbon Fiber Reinforced Composites
CSTR:
Author:
Affiliation:

1.Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials & Processing Technology,Beijing 100076;2.The First Military Representative Office of the Rocket Army Equipment Department, Beijing 100190

Clc Number:

TB332

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Characterizing the axial compressive properties is always the difficulty in the fields of investigating the mechanical performance of the composite materials. In this paper, the pros and cons of four test methods for determining the compressive properties of the composite materials are comparatively summarized, by experimental investigations, mechanism analysis and computational simulations, based on domestic T800-grade composites and M40J-grade composite. Additionally, the optimized test conditions are proposed. The results of experiments and simulations indicate that the compressive strength determined by the test method of GB/T 3856—2005 is decreased by 9% than that of the test method of ASTM D3410—2016, due to premature failure, although the compressive force is both introduced through shear for the two methods. Whereas, the compressive strength measured by the end-loaded method of SACMA SRM 1R-94 is 3% to 6% higher than that of the method of ASTM D3410—2016 and D6641—2014. Moreover, the experiments for optimizing the test conditions demonstrate that the strengthening tabs have a noticeable effect on the measured compressive properties for the high-performance carbon fiber composites. Accordingly, tabs made of metal are suitable for composite materials with strong interfacial bonding and high fracture strength; while tabs made of glass fiber reinforced polymer are suitable for those with weak interfacial bonding and low fracture strength. From the images of the fracture appearance of the specimens, it is observed that there are typical failure modes of ‘kinking band’ of the fibers for both the shear-loaded method and the end-loaded method. Therefore, the end-loaded compression method is a preferable method for determining the compressive strength of the composite materials, considering the measured results and failure modes.

    Reference
    [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007,24(1): 1-12.DU S Y.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica,2007,24(1): 1-12.
    [2] 冯志海. 关于我国高性能碳纤维需求和发展的几点想法[J]. 新材料产业, 2010(9): 19-24.FENG Z H. Thinking on the demand and development of high-performance carbon fiber in China[J]. Advanced Materials Industry, 2010(9): 19-24.
    [3] 赵云峰, 孙宏杰, 李仲平. 航天先进树脂基复合材料制造技术及其应用[J]. 宇航材料工艺, 2016, 46(4): 1-7.ZHAO Y F, SUN H J, LI Z P. Manufacturing technology and its application of aerospace advanced polymer matrix composites[J]. Aerospace Materials & Technology, 2016, 46(4): 1-7.
    [4] 沈真, 杨胜春.飞机结构用复合材料的力学性能要求[J]. 材料工程, 2007, (Z1):248-252.SHEN Z, YANG S C. Property requirements of composite systems applicable to aircraft structures[J]. Journal of Materials Engineering, 2007, (Z1):248-252.
    [5] 刘巍,张天骄,包建文,等.树脂交联结构特征对复合材料纵向压缩性能的影响[J].航空材料学报,2016,36(1): 75-80.LIU W, ZHANG T J, BAO J W, et al. Effects of epoxy resin cross-linked structure characteristics on longitudinal compressive performance of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials, 2016, 36(1): 75-80.
    [6] CHATERJEE S, ADAMS D F, OPLINGER D W. Test methods for composites: a status report. Volume 2. Compression test methods[R]. Materials Sciences Corp Blue Bell PA, 1993.
    [7] 魏宏艳, 杨胜春, 沈真,等. 复合材料压缩试验方法的对比分析与研究[C]// 第十五届全国复合材料学术会议论文集(下册). 北京: 国防工业出版社, 2008: 790-794.WEI H Y, YANG S C, SHEN Z, et al. Research on test methods for determining the compressive properties of composite materials[C]// Proceedings of the 15th National Conference on Composite Materials (Volume Two). Beijing: National Defense Industry Press, 2008: 790-794.
    [8] CMH-17 committee. Composite materials handbook, Volume 1, Polymer matrix composites[M]. Pennsylvania: SAE International, 2012.
    [9] 沈真. 复材力学性能测试中的若干问题[J]. 玻璃钢, 2015(3): 12-21.SHEN Z. Problems in mechanical tests of the composites[J]. Fiber Reinforced Plastics, 2015(3): 12-21.
    [10] 杨国腾, 侯丽华, 于艳华. 复合材料压缩性能试验方法分析[J]. 测控技术, 2014, 33(增刊): 468-469.YANG G T, HOU L H, YU Y H. Research on the test method of compressing properties of composite materials[J]. Measurement & Control Technology, 2014, 33(Z): 468-469.
    [11] 周祝林, 吴妙生, 易洪雷,等. 纤维复合材料薄层板压缩性能试验方法评论[C]//复合材料:创新与可持续发展. 北京: 中国科学技术出版社, 2010: 466-470.ZHOU Z L, WU M S, YI H L, et al. Comment on test methods for composite sheet plate compressive properties[C]// Composites: Innovation and Sustainable Development. Beijing: China Science and Technology Press, 2010: 466-470.
    [12] SCHOEPPNER G A,SIERAKOWSKI R L.A review of compression test methods for organic matrix composites[J]. Journal of Composites,Technology and Research,1990,12(1): 3-12.
    [13] ADAMS D O. Comparative testing to assess the equivalence of CEN and ASTM test methods for composite materials, DOT/FAA/AR-04/50[R]. Washington: Federal Aviation Administration, 2005.
    [14] BERG J S, ADAMS D F. An evaluation of composite material compression test methods[J]. Journal of Composites, Technology and Research, 1989, 11(2): 41-46.
    [15] 全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料平板压缩性能试验方法: GB/T 3856—2005 [S]. 北京: 中国标准出版社, 2005.National Standardization Administration of Fiber Reinforced Plastic. Test method for compression properties of unidirectional fiber reinforced plastics:GB/T 3856—2005 [S].Beijing: Standards Press of China, 2005.
    [16] American Society of Testing Materials (ASTM) committee. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading: ASTM D3410—2016 [S]. West Conshohocken, US: ASTM International, 2016.
    [17] American Society of Testing Materials (ASTM) committee. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (clc) test fixture: ASTM D6641—2014 [S]. West Conshohocken, US: ASTM International, 2014.
    [18] Suppliers of advanced composite materials association (SACMA). SACMA recommended test method for Compressive properties of oriented fiber-resin composite: SRM1R—1994 [S]. Arlington, US: Suppliers of advanced composite materials association, 1994.
    [19] ZHANG M, WANG X, LI W, et al. Compressive strength determined for ultrahigh modulus fiber reinforced composites by [90/0]ns laminates[J]. Composite Structures, 2018, 191(5): 24-35.
    [20] 贺崇武, 蔡昕锁. 复合材料压缩性能试验研究[C]//第十二届全国复合材料学术会议论文集.天津:天津大学出版社, 2002: 724-727.HE C W, CAI X S. Test study for compressive property of carbon fiber composite[C]// Proceedings of the 12th National Conference on Composite Materials. Tianjin: Tianjin University Press, 2002: 724-727.
    [21] 张龙, 王波, 矫桂琼. 复合材料层合板的压缩试验对比研究[C]// 中国力学大会暨钱学森诞辰100周年纪念大会论文集. 北京: 中国力学学会, 2011: 1-7.ZHANG L, WANG B, JIAO G Q. Comparative investigation on compression tests of composite laminates[C]// Proceedings of China Mechanics Conference and the 100th Anniversary of Qian Xuesen''s Birth. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2011: 1-7.
    [22] 李桂洋, 李健芳, 杨云华,等.三种T700级碳纤维及其复合材料性能比较[J]. 宇航材料工艺, 2016, 46(4):32-36.LI G Y, LI J F, YANG Y H, et al. Comparative Study on properties of three t700 grade carbon fibers and their epoxy matrix composites[J]. Aerospace Materials & Technology, 2016, 46(4):32-36.
    [23] PIMENTA S, GUTKIN R, PINHO S T, et al. A micromechanical model for kink-band formation: Part I — Experimental study and numerical modelling[J]. Composites science & Technology, 2009, 69(7-8):948-955.
    [24] JUMAHAT A, SOUTIS C, HODZIC A. A graphical method predicting the compressive strength of toughened unidirectional composite laminates[J]. Applied Composite Materials, 2011, 18(1):65-83.
    [25] BERBINAU P, SOUTIS C, GUZ I A. Compressive failure of 0° unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling[J]. Composites science and Technology, 1999, 59(9):1451-1455.
    [26] YOKOZEKI T, OGASAWARA T, ISHIKAWA T. Nonlinear behavior and compressive strength of unidirectional and multidirectional carbon fiber composite laminate[J]. Composites Part A Applied Science & Manufacturing, 2006(37):2069-2079.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1052
  • PDF: 2606
  • HTML: 1042
  • Cited by: 0
History
  • Received:October 21,2020
  • Revised:March 30,2022
  • Adopted:January 05,2021
  • Online: April 20,2022
  • Published: April 30,2022
Article QR Code