・计算材料学・

热固性树脂炭化过程中的耦合控制方程建立

苏小虎 梁 伟

(北京航空航天大学航空科学与工程学院,北京 100191)

文 摘树脂炭化是一个复杂的物理化学变化过程,包括传热传质、应力应变、热分解等耦合过程。基于物理守恒原理,理论推导出了瞬态的热-流-固耦合方程组,包括树脂变形方程、热解气体渗流方程和能量守恒 方程,分析了各物理场之间的相互耦合作用,并对后续研究提出建议。

关键词 碳/碳复合材料,树脂,炭化,多场耦合,控制方程 中图分类号:TU52 DOI:10.3969/j.issn.1007-2330.2015.05.003

Establishment of Coupled Governing Equations in the Carbonization Process of Thermoset Resins

SU Xiaohu LIANG Wei

(School of Aeronautic Science and Engineering, Beihang University, Beijing 100191)

Abstract The carbonization of resins owns a very complicated with physically and chemically phenomenon, involving heat and mass transfer, stress and strain generation and pyrolysis. The transient governing equations of coupled thermo-hydro-mechanical process are theoretically derived based on physical conservation, namely equations for resins deformation, gas flow and energy conservation. Analysis of coupling interaction of the multi-physics are carried on. And some suggestions are proposed for further study.

Key words C/C composites, Resins, Carbonization, Coupled multiphysics, Governing equations

0 引言

C/C 复合材料具有一系列其他材料所无法比拟的独特优点,在航天工程、新型飞机、高速列车等领域得到愈来愈广泛的应用^[1-2]。但是由于高成本,C/C 复合材料仅仅应用在一些特殊领域。然而随着对 C/C 复合材料的需求越来越多,减少生产周期和降低生产成本变得必要。因此,需要对生产工艺进行改进,精确控制以获得满足性能要求的最终产品。

在 C/C 复合材料的生产过程中,炭化是关键的 一个环节。炭化过程中,树脂基体会释放出气体留下 残碳作为 C/C 复合材料的碳基。这是一个十分复杂 的过程,涉及到力学和化学中许多耦合场,包括过程 中的传质传热、产生残余应力应变、裂缝的产生以及 树脂的热分解等,且每种变化进程对其他进程有很大 影响,因此这就要求同时分析这些过程以获得对炭化 过程全面的认识^[3-4]。

Lovell 等^[5-6]单从化学角度研究了热固性树脂的 化学热分解动力学。Sandhu 等^[7-8]给出了一种有效 的方法研究树脂炭化过程中失重的动力学和挥发性 气体组分。Nam 等^[9-11]考虑传热传质方程得到了树 脂热分解失重动力学。Aoki 等^[12-13]将应力应变的产 生机制和裂纹的评估考虑到模型中,以研究炭化过程 中的变形问题。Kim 等^[14]综合考虑了传热传质以及 应力应变得到了一个综合性的炭化模型,但是模型过 于简单,没有涉及到模型中的耦合关系。

本文在前人基础上,考虑到实际的求解需求,推

收稿日期:2015-04-15

作者简介:苏小虎,1989年出生,硕士,主要从事 C/C 复合材料炭化模拟研究工作。E-mail:mikesue@163.com

导出来一组考虑多物理场完全耦合而又具有可解性的方程组。由于热固性树脂本身具有各向同性的物理性能,因此为了简化推导过程,仅选择树脂作为研究对象,进行炭化过程的控制方程推导。

1 理论推导

根据线性动量守恒、质量守恒和能量守恒定律, 基于线弹性小变形、饱和多孔介质等假设进行推导。 文中以拉应力为正。

1.1 变形场控制方程

1.1.1 有效应力

Terzaghi有效应力原理认为固相骨架的主要变 形是由有效应力控制,孔隙中流体压力是骨架产生均 匀的梯级应变,公式如下:

$$\boldsymbol{\sigma}_{ij} = \boldsymbol{\sigma}'_{ij} + \alpha_p p \boldsymbol{\delta}_{ij} \tag{1}$$

式中, σ 为全应力张量, σ' 为有效应力张量, α_p 为 Biot 系数,p为孔隙压力, δ_i 为 Kronecker 符号。

1.1.2 热弹性本构关系

假设树脂固相是弹性小变形,骨架热膨胀性质和 力学性质为各向同性,考虑热效应作用,有效应力-应变本构关系为:

$$\boldsymbol{\sigma'}_{ij} = 2G\boldsymbol{\varepsilon}_{ij} + \frac{2Gv}{1-2v}\boldsymbol{\varepsilon}_{kk}\boldsymbol{\delta}_{ij} - K'\alpha'_{T}T\boldsymbol{\delta}_{ij} \qquad (2)$$

式中, ε_{ij} 为应变张量,G为剪切模量,v为泊松比, ε_{kk} 为体应变,K'是骨架体积模量, α_{r}' 为体胀系数,T是温度。

1.1.3 几何方程

根据树脂骨架小变形的假设,几何方程为:

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \tag{3}$$

$$\varepsilon_v = \varepsilon_{kk} = \varepsilon_x + \varepsilon_y + \varepsilon_z \tag{4}$$

式中, $u_{i,j}$ 为骨架的位移分量, ε_v 为体应变。

1.1.4 静力平衡方程

忽略惯性项的影响,推导出静力平衡方程:

$$\sigma_{ij,j} + f_i = 0 \tag{5}$$

式中, f_i 为树脂(包括气体)的体积力, $f_i = (0,0,\rho_{\rm m}g)^T$,其中 $\rho_{\rm m} = \varphi \rho_{\rm g} + (1-\varphi)\rho_s, \varphi$ 为树脂的 孔隙度, $\rho_{\rm g}, \rho_{\rm s}$ 分别是气体和树脂骨架的密度。

将式(3)带入式(1),然后带入式(2),即可得到 变形场的控制方程:

$$Gu_{i,jj} + \frac{G}{1 - 2\nu}u_{j,ji} + f_i - \alpha_p P_{,i} - K' \alpha_T' T_{,i} = 0\,(6)$$

(6)式对指标 i 求导可得

-20 -

$$\frac{1-\nu}{1-2\nu} 2G \nabla^2 \varepsilon_v - \alpha_p \nabla^2 P - K' \alpha_T' \nabla^2 T + f_{i,i} = 0$$
(7)

式中,∇为拉普拉斯算符。

(7)式即为树脂骨架耦合变形场,左边第二项体 现了渗流变化影响的耦合项,左边第三项体现了温度 变化影响的耦合项。

1.2 渗流场控制方程

耦合渗流场控制方程的推导是基于质量守恒定 律和达西定律。

1.2.1 达西定律

炭化过程中有两个位移量,即树脂骨架位移矢量 u_s和气体的位移矢量 u_g,相对应的有两个速度即 v_s 和 v_g。因此其相对速度为 v_r:

$$v_{\rm r} = v_{\rm g} - v_{\rm s} \tag{8}$$

式中,下标 s 和 g 分别对应着固体和气体的量,根据 Dupuit-Forchheimer^[15]关系式,渗流速度为 φv_{+} ,即:

$$\varphi v_{\rm r} = -\frac{K}{\mu_{\rm g}} \,\nabla p \tag{9}$$

式中, K 为渗透率, µg 为气体黏度。

1.2.2 连续性方程

考虑质量源项,则流体的连续性方程为:

$$\frac{\partial(\rho_{\rm g}\varphi)}{\partial t} + \nabla \cdot (\rho_{\rm g}\varphi v_{\rm g}) = Q_{\rm g}$$
(10)

式中,源项Q。为气体产生的速率。

将式(8)带入上式,并展开得:

$$\rho_{g} \frac{\partial \varphi}{\partial t} + \varphi \frac{\partial \rho_{g}}{\partial t} + \nabla \cdot (\rho_{g} \varphi v_{r}) + \rho_{g} \varphi \nabla \cdot v_{s}$$

$$+ v_{s} \cdot \nabla \rho_{s} \varphi = Q_{s}$$
(11)

略去二阶小量项 *v*_• · ∇得:

$$\rho_{\rm g} \frac{\partial \varphi}{\partial t} + \varphi \frac{\partial \rho_{\rm g}}{\partial t} + \nabla \cdot (\rho_{\rm g} \varphi v_{\rm r}) + \rho_{\rm g} \varphi \nabla \cdot v_{\rm s} = Q_{\rm g}$$
(12)

类似地,树脂骨架的连续方程为:

$$\frac{\partial (1-\varphi)\rho_{s}}{\partial t} + \nabla \cdot \left[(1-\varphi)\rho_{s}v_{s} \right] = Q_{s} \quad (13)$$

式中,源项 Q_s 为树脂减少的速率,且 $Q_s = -Q_g$ 展开上式得:

$$(1 - \varphi) \frac{\partial \rho_{s}}{\partial t} - \rho_{s} \frac{\partial \varphi}{\partial t} + (1 - \varphi) \rho_{s} \nabla \cdot v_{s} + (14)$$
$$v_{s} \cdot \nabla [(1 - \varphi) \rho_{s}] = Q_{s}$$

略去小量项 v_s · ∇ ,再将各项乘以 ρ_g / ρ_s 得:

$$(1 - \varphi) \frac{\rho_{\rm g}}{\rho_{\rm s}} \cdot \frac{\partial \rho_{\rm s}}{\partial t} - \rho_{\rm g} \frac{\partial \varphi}{\partial t} + (1 - \varphi) \rho_{\rm g} \nabla \cdot v_{\rm s} = \frac{\rho_{\rm g}}{\rho_{\rm s}} Q_{\rm s}$$
(15)

将式(12)和式(15)相加,得到整体的连续方程,

宇航材料工艺 http://www.yhclgy.com 2015 年 第5期

$$\begin{split} \varphi \, \frac{\partial \rho_{\rm g}}{\partial t} + \left(1 - \varphi\right) \frac{\rho_{\rm g}}{\rho_{\rm s}} \frac{\partial \rho_{\rm s}}{\partial t} + \nabla \cdot \left(\rho_{\rm g} \varphi v_{\rm r}\right) + \rho_{\rm g} \, \nabla \cdot v_{\rm s} = \\ \left(1 - \frac{\rho_{\rm g}}{\rho_{\rm s}}\right) Q_{\rm s} \end{split}$$

因为骨架中 $\nabla \cdot v_s = \frac{\partial}{\partial t} (\nabla \cdot u_s) = \frac{\partial}{\partial t} (u_{i,i}) = \frac{\partial \varepsilon_v}{\partial t}$,

$$\varphi \frac{\partial \rho_{g}}{\partial t} + \frac{(1-\varphi)\rho_{g}}{\rho_{s}} \frac{\partial \rho_{s}}{\partial t} + \rho_{g} \frac{\partial \varepsilon_{v}}{\partial t} + \nabla \cdot (\rho_{g}\varphi v_{r}) = Q_{g}(17)$$

1.2.3 状态方程

气体的状态方程符合理想状态方程,即:

$$\rho_{\rm g} = \frac{pM_{\rm w}}{RT} \tag{18}$$

)

式中,R为气体常数,M_w为气体平均摩尔质量。 对于固体密度可用下式表示^[16]:

$$\rho_{s} = \rho_{s0} (1 + \frac{p - p_{0}}{K_{s}} - 3\alpha_{T_{s}} (T - T_{0}) - \frac{\operatorname{tr}(\sigma' - \sigma'_{0})}{(1 - \varphi)3K_{s}})$$
(19)

式中, ρ_{s0} 为初始密度; K_s 是树脂基体体积模量; α_{Ts} 为树脂基体热胀系数; σ' 为有效应力。将固体密度对时间求导,即:

(16)

$$\frac{(1-\varphi)}{\rho_{s}}\frac{\partial\rho_{s}}{\partial t} = -\frac{K'}{K_{s}}\frac{\partial\varepsilon_{v}}{\partial t} + \frac{1}{K_{s}}\left[1-\varphi-\frac{K'}{K_{s}}\right]\frac{\partial\rho}{\partial t} - 3\left[(1-\varphi)\alpha_{T_{s}}-\frac{K'}{K_{s}}\alpha'_{T}\right]\frac{\partial T}{\partial t}$$
(20)

将达西方程、气体状态方程以及固体密度的导数带入得

$$\frac{pM_{w}}{RT} \left\{ -\frac{K'}{K_{s}} \frac{\partial \varepsilon_{v}}{\partial t} + \frac{1}{K_{s}} (1 - \varphi - \frac{K'}{K_{s}}) \frac{\partial p}{\partial t} - 3 \left[(1 - \varphi) \alpha_{T_{s}} - \frac{K'}{K_{s}} \alpha'_{T} \right] \frac{\partial T}{\partial t} \right\} + \frac{M_{w}}{RT} \frac{\partial p}{\partial t} + \frac{pM_{w}}{RT} \frac{\partial \varepsilon_{v}}{\partial t} - \nabla \cdot \left(\frac{pM_{w}}{RT} \frac{K}{\mu_{g}} \nabla p \right) = Q_{g}$$

$$(21)$$

即:

$$p\alpha_{p}\frac{\partial\varepsilon_{v}}{\partial t} - 3p\left[(1-\varphi)\alpha_{T_{s}} - \frac{K'}{K_{s}}\alpha'_{T}\right]\frac{\partial T}{\partial t} + \left[1 + \frac{p}{K_{s}}(1-\varphi - \frac{K'}{K_{s}})\right]\frac{\partial p}{\partial t} - \frac{K}{\mu_{g}}\nabla^{2}p^{2} = \frac{\mathrm{R}TQ_{g}}{M_{w}}$$
(22)

式中,等号左边第1项为骨架体应变的变化对渗流的 影响,第2项为热膨胀对渗流的影响,第3项和第4 项则是渗流项,等号右端为源项。

1.3 温度场控制方程

且1 - $\frac{\rho_{g}}{\rho} \approx 1$,因此有:

温度场控制方程的推导主要是基于热传导和热 对流。固体骨架与气体位于同一空间,但是他们有不 同的热动力学性质,因此骨架和气体的能量守恒方程 需要分别定义。

1.3.1 对于气体

$$\varphi(\rho c_p)_{g} \frac{\partial T}{\partial t} = \varphi \nabla \cdot (\lambda_g \nabla T) - (\rho c_p)_{g} \nabla \cdot (T v_g) + \varphi q_g$$
(23)

式中, $(\rho c_p)_g$ 为气体的比热容, λ_g 为气体的热传导系数, q_g 为气体的热源强度。

1.3.2 对于骨架,忽略对流项

$$(1 - \varphi)(\rho c_p)_s \frac{\partial T}{\partial t} = (1 - \varphi) \nabla \cdot (\lambda_s \nabla T) + (1 - \varphi)q_s$$
(24)

式中, $(\rho c_p)_s$ 为树脂骨架比热容, λ_s 为骨架热传导系数, q_s 为骨架的热源强度。

对于单相流,假设骨架和流体之间总是处于热平 衡状态,因此将式(23)和式(24)相叠加,并加上固体 的变性能和外热源,即可得到能量守恒方程,如下: 宇航材料工艺 http://www.yhclgy.com 2015年 第5期

$$(\rho c_{p})_{t} \frac{\partial T}{\partial t} = \lambda_{t} \nabla^{2} T - (\rho c_{p})_{g} \nabla \cdot (T v_{g}) - (1 - \varphi) T K' \alpha_{T} \frac{\partial \varepsilon_{v}}{\partial t} + q_{t} + q_{v}$$

$$(25)$$

其中:

$$(\rho c_p)_t = \varphi (\rho c_p)_g + (1 - \varphi) (\rho c_p)_s$$
$$\lambda_t = \varphi \lambda_g + (1 - \varphi) \lambda_s$$

式中,等号左边第1项表示由于温度变化引起的单位体积内能的变化,等号右端第1项由热传导引起的内能变化,第2项由于热对流引起的内能变化,第3项是由于体应变的变化引起的介质变性能, q_i 为内热源, m q_i 为外热源。

方程(6)、(22)和(25)就是求解 u_i 、p和T的完整方程组。

2 问题的求解

2.1 边界条件

(1)给定界面上的位移量 $u^{0}(\vec{x},t)$,其中 $\vec{x} = (x, y,z)$;

(2)给定界面上的压力 $p^{0}(x,t)$;

(3)给定界面上的温度 $T^{0}(x,t)$,或热通量。

2.2 初始条件

— 21 —

初始条件为给定区域上位移、压力和温度的初始 值u(x,0)、p(x,0)、T(x,0)。

有了边界条件和初始条件就能对方程组进行求 解,求得p、T和 u_i 。可利用式算出体应变 ε_i 进而算 出炭化过程的应力分布 σ_{ij} 。也可以研究区域内的 某些点的压力和温度随时间的变化,通过达西定律求 得渗流速度。

由于该方程组是非线性,只有通过简化才有可能 得到其解析解,一般都是用数值的方法对其进行求 解。

3 结论和建议

通过理论推导,建立了以位移、压力和温度为未 知量的炭化过程中的热-流-固耦合的数学模型。但 对于实际应用来说,还有以下不足:

(1)本文是基于树脂基体的数学建模,适用于各向同性的介质,而对 C/C 复合材料的炭化,还需考虑碳纤维组分的影响;

(2)在实际的 C/C 复合材料的炭化过程中,一般 需要向炭化炉中通入氮气等惰性气体,需要考虑惰性 气体的驱动作用;

(3)在炭化过程中,孔隙并非均匀,应加以对孔 隙形态的研究,引入断裂力学内容,以获得最大应力 的分布,获得残余应力,研究材料性能;

(4)本文主要是理论推导,没有涉及到试验内容,所以后续需进一步对模型进行验证。

参考文献

[1] Schmidt D L, Davidson K E, Theibert L S. Unique applications of carbon-carbon composite materials [J]. SAMPE J, 1999,35(3):27-39

[2] 孔清,樊桢,余立琼,等. 高导热 C/C 复合材料的发 展现状 [J]. 宇航材料工艺,2014,44(1):16-23

[3] Matzinos P D, Patrick J W, Walker A. The void structure of 2-D C/C preforms and composites: effect of the nature of the matrix precursor coal-tar pitch [J]. Carbon, 1997, 35(4): 507-513

[4] Jortner J. Microstructure of cloth-reinforced carbon-car-

bon laminates [J]. Carbon, 1992, 30(2): 153-163

[5] Lovell A B, Brezinsky K, Glassman I. The gas phase pyrolysis of phenol [J]. Int. J Chem. Kinet., 1989,21:547-560

[6] Sullivan E A. Thermal degradation of epoxy novolac – phenol formaldehyde novolac resinsystems [J]. J Appl. Polym. Sci., 1991,42:1815–1827

 $[\,7\,]$ Sandhu S S. An empirical intrinsic chemical kinetic model for the carbon/carbon composite pyrolysis process $[\,J\,]$. J Mater. Sci. Lett. , 1996,15:203-204

[8] Pektas I. High-temperature degradation of reinforced phenolic insulator [J]. J Appl. Polym . Sci. , 1998,68:1337-1342

[9] Nam J, Seferis J C. Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions [J]. J. Polym. Sci. B, 1992,30;455-463

[10] Nam J, Seferis J C. A composite methodology for multistage degradation of polymers [J]. J Polym. Sci. B, 1991,29: 601-608

[11] Nam J, Seferis J C. Initial polymer degradation as a process in the manufacture of carbon/carbon composites [J]. Carbon,1992,30(5):751-761

 $[\,12\,]$ Aoki H, Ueda A, Goto K, et al. An estimation of thermal stress within the coal briquette during carbonization $[\,J\,].$ ISIJ Int. , $1995,35(2):\!121-\!126$

[13] Aoki H, Ueno A, Miura T. Thermal stress analysis considering effects of pyrolytic gas flow in lump coke [J]. Ka-gaku Kogaku Ronbunshu, 1994,20(1):89-96

[14] Kim J, Lee W, Lafdi K. Numerical modeling of the carbonization process in the manufacture of carbon/carbon composites [J]. Carbon, 2003, 41:2625-2634

 $[\,15\,]$ Strack O D L. A dupuit-forchheimer model for threedimensional flow with variable density $[\,J\,].$ Water Resoure Res. , 1995 ,31(12) :3007–17

[16] 孔祥言. 高等渗流力学[M]. 合肥:中国科技大学 出版社,2010;683

(编辑 李洪泉)