不同金属基体上 W-C:H 溅射薄膜的摩擦学性能

郑 军 周 晖 杨拉毛草 张延帅 翟广泉2

(1 兰州空间技术物理研究所,真空技术与物理重点实验室,兰州 730000)(2 北京空间机电研究所,北京 100094)

文 摘 采用非平衡磁控溅射技术在40Cr、9Cr18、GCr15、TC4及LY12等5种金属基体上沉积了钨掺杂含氢 类金刚石(W-C:H)薄膜。采用 Raman 光谱仪、扫描电子显微镜、纳米硬度计及纳米划痕仪分别测试了薄膜的微 结构、厚度、硬度及附着力,采用球-盘摩擦试验机及光学轮廓仪分别在干摩擦和 PFPE 脂润滑条件下评价了5种 金属材料基体上薄膜的摩擦磨损性能。薄膜性能测试结果显示,该厚度为1 μm 的薄膜具有典型的类金刚石结 构,硬度与弹性模量分别为11.56和128.34 GPa,附着力为645 mN;摩擦试验结果显示,在干摩擦条件下几种金属 基体表面 W-C:H 薄膜的摩擦因数和磨损率差别比较显著,而在脂润滑条件下基体材料的影响较小;与干摩擦条 件相比,脂润滑条件下薄膜的磨损可减少60%~75%;在干摩擦与脂润滑条件下,9Cr18与40Cr基体上的 W-C:H 薄膜摩擦体系分别具有最小的磨损率1.71×10⁻⁷ mm³/(N·m)及4.55×10⁻⁸ mm³/(N·m)。

关键词 W-C:H 薄膜,摩擦学,PEPE 润滑脂,力学性能,非平衡磁控溅射

中图分类号:TH117.1 DOI:10.3969/j.issn.1007-2330.2015.01.015

Tribological Properties of Sputtered W-C:H Films on Several Metallic Substrates

 ZHENG Jun¹
 ZHOU Hui¹
 YANG Lamaocao¹
 ZHANG Yanshuai¹
 ZHAI Guangquan²

 (1
 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000)
 730000)

 (2
 Beijing Institute of Space Machinery and Electronics, Beijing 100094)

Abstract Tungsten doped hydrogenated diamond-like carbon films (W - C: H) were deposited on 40Cr, 9Cr18, GCr15, TC4 and LY12 substrates with the unbalanced magnetron sputtering method. The surface morphology, microstructure, microhardness, adhesion, and tribological properties of the films were characterized by scanning electron microscope (SEM), Raman spectroscope, nano-hardness/scratch tester, and ball-on-disk tribo-meter respective-ly. The effect of different substrate materials on tribological properties of the deposited films were studied under dry friction and PEPE grease lubrication conditions. Films quality testing results shows the films with 1 μ m thickness have typical diamond-like structures and exhibit high hardness 11.56 GPa, elastic modulus 128.34 GPa, and good adhension 645 mN. Tribological test results show that the friction coefficient and wear rate of the films deposited on several metal substrates are significant different in dry sliding, and the substrate effect is smaller under grease lubrication. Compared with the friction results in dry sliding, the wear under grease lubrication can reduce 60% to 75%. The W-C: H films deposited on 9Cr18 and 40Cr substrates provide the minimum wear rate of $1.71 \times 10^{-7} \text{ mm}^3/(\text{N} \cdot \text{m})$ and 4. $55 \times 10^{-8} \text{ mm}^3/(\text{N} \cdot \text{m})$ in dry sliding and grease lubrication respectively.

Key words W-C:H films, Tribology, PEPE lubricant, Mechanical properties, Ubalanced magnetron sputtering

0 引言

近年来,类金刚石薄膜(DLC)以其良好的力学性能和化学稳定性,被广泛用于改善运动机构的摩擦学性能,通过掺杂金属元素如 Cr、Si、Ti、W 等可进一步

优化 DLC 薄膜的力学性能和摩擦学性能^[1-6]。研究 表明,在这些金属掺杂类 DLC 薄膜中,W 掺杂含氢 DLC(W-C:H)具有低摩擦、低内应力、高硬度、耐磨 损及优异的附着力性能,而成为目前国内外研究的热

收稿日期:2014-12-16

作者简介:郑军,1983年出生,工程师,主要从事空间润滑薄膜技术研究。E-mail:zhengj1983@163.com

点之一^[7-10],相关研究结果成功地应用于解决空间运动机构的摩擦学问题^[11-13]。然而,目前的研究工作大多集中在以钢为基体的薄膜以及油润滑(如 ZD-DP、PAO 等)条件下的摩擦学性能,而对其他空间用金属材料如 LY12 和 TC4 基体,以及空间脂(如 PF-PE、Mac 等)润滑条件下的摩擦学性能研究相对较少。本文采用非平衡磁控溅射技术在 40Cr、9Cr18、GCr15、TC4 及 LY12 等几种金属材料基体上制备了W-C:H 薄膜,研究了干摩擦及 PFPE 脂润滑条件下 基体金属材料对 W-C:H 薄膜摩擦学性能的影响。

1 试验

1.1 薄膜制备

利用荷兰 HAUZER 公司生产的 750 型非平衡磁 控溅射系统在氩气及乙炔气氛中沉积了 W-C:H 薄 膜,溅射靶材料为碳化钨。实验选用单晶硅片为基体 用来表征薄膜的结构、硬度及附着力性能,选用尺寸 为 Φ 32 mm×12 mm 的金属试环以评价薄膜在干摩擦 及 PFPE 脂润滑条件下的摩擦学性能。金属试环材 料为 40Cr (GB/T3077—1999)、9Cr18 (GB/T1220— 1992)、GCr15 (GB/T18254—2002)、TC4 (GB/ T2965—2007)及 LY12 (GB/T3880—2006)。制备的 膜层结构为:先在基体上沉积一层厚度为 50 nm 的 Cr 层作为底层,然后沉积 Cr/WC 中间层,最后制备 W-C:H 薄膜。W-C:H 薄膜沉积工艺参数为:沉积 压力1.33 Pa,WC 靶溅射功率 8 kW,工件台偏压-100 V,非平衡线圈电流 2 A,氩气流量 300 sccm, C₂H₂ 气体流量 60 sccm,沉积温度约 160℃。

1.2 薄膜表征

采用 Jobin Yvon T64000 型拉曼光谱仪表征 W-C:H 薄膜的微观结构;采用 S-4800 场发射扫描电镜 观察薄膜的表面与断面形貌以及厚度;采用 CSM 纳 米硬度计测试薄膜的硬度和弹性模量,测试时压入深 度小于薄膜厚度的 10%,并选取 15 个点进行测试, 取平均值做为薄膜最终硬度和弹性模量值;采用 CSM 公司纳米划痕仪测试薄膜与基体的附着力性 能,测试条件:压头半径 2 μm,加载范围 1~800 mN, 加载速率 200 mN/min,划痕速率 1 mm/min,划痕长 度 4 mm,测试时划痕 3 次,取最小临界载荷值作为薄 膜与基体的附着力值。

1.3 薄膜摩擦磨损性能评价

采用 CSM 球-盘摩擦磨损试验机评价薄膜在干 摩擦及脂润滑条件下的摩擦学性能。脂润滑测试时 先在试环表面均匀的涂覆一层 PFPE 润滑脂(0.5 g 重),其他测试条件与干摩擦下的条件相同。测试条 件具体为:对偶件选择 G10 级Φ8 mm 9Cr18 钢球 (HRC≥58),试验时球固定不动,试环做单方向旋 转,滑动速度 500 r/min,法向加载 5 N,相对湿度 20% ~30%,室温。试验实时监测和记录摩擦因数, 当累计运转 7.5×10⁴转后停止试验,采用 Taylor Hobson Talysurf CCI Lite 型光学轮廓仪对磨斑和磨痕的 二维及三维形貌进行分析,测试磨斑和磨痕的磨损体 积,并计算其磨损率。

2 结果与讨论

2.1 薄膜结构与力学性能

W-C:H 薄膜厚度、硬度与弹性模量、结合强度 等性能测试结果见表1。

表1 W-C:H 薄膜厚度及力学性能测试结果

Tab. 1 Thickness, mechanical properties of W-C:H films

纳米压入硬度/GPa	弹性模量/GPa	结合强度/mN	厚度/μm
11.56	128 34	645.00	1.00

图1给出了 W-C:H 薄膜的拉曼光谱图。

Fig. 1 Raman spectroscopy of W-C:H films

从图 1 看出,该薄膜试样在 1 380 cm⁻¹ 和 1 550 cm⁻¹ 附近都存在展宽的峰,其中1 550 cm⁻¹ 处的峰 与G峰对应,而在1380 cm⁻¹ 处的峰大致和D峰对 应,具有这种特点的拉曼谱被认为是类金刚石膜的拉 曼特征峰。同时对薄膜的 Raman 谱进行分峰处理. 并计算 $I_{\rm p}/I_{\rm c}$ 的面积比, $I_{\rm p}/I_{\rm c}$ 为 3.2。表明沉积的薄 膜具有典型的 DLC 结构。对 W-C:H 薄膜厚度、表 面形貌及断面形貌进行分析(图2)。可看出,薄膜厚 度约为1 μm,薄膜表面由几十到几百个纳米的颗粒 组成,表层 W-C:H 薄膜呈现典型的柱状结构,薄膜 明显分为三层.Cr+Cr/WC+W-C:H.这种结构可以有 效提高薄膜的附着力。图3给出了 W-C:H 薄膜的 典型划痕曲线。可见,随加载力的增加,摩擦力增加, 当加载至645 mN 时摩擦力出现突变,此时通过显微 镜观察,薄膜首次出现了剥落,薄膜与基体的附着力 为645 mN。纳米压痕测试常用来测试薄膜的机械性 能[14-15]。为减小基体效应,纳米压痕测试时压入深 度应小于薄膜膜厚的 1/10,因此压入深度设定为 80 nm。图4给出了W-C:H薄膜压痕测试的典型载荷 - 位移曲线, 根据载荷- 位移曲线可得到薄膜的纳米 宇航材料工艺 http://www.yhclgy.com 2015 年 第1期

压入硬度及弹性模量。由结果可知, W-C:H 薄膜硬

图 3 W-C:H 薄膜纳米划痕测试结果

Fig. 3 Nanoscratch testing result of W-C:H films

2.2 薄膜在干摩擦条件下的摩擦磨损性能

不同金属基体上 W-C:H 薄膜在干摩擦条件下的摩擦测试曲线如图 5 所示。

图5 干摩擦条件下 W-C:H 薄膜的摩擦因数

Fig.5 Friction coefficients of the W-C:H films in dry sliding friction 可以看出不同基体上 W-C:H 薄膜的摩擦因数 宇航材料工艺 http://www.yhclgy.com 2015 年 第1期 差别较大。40Cr 基体上 W-C:H 薄膜具有最小的摩 擦因数 0.12,LY12、TC4 及 9Cr18 基体上 W-C:H 薄 膜的摩擦因数分别为 0.18、0.20 和 0.24,而 GCr15 基体上 W-C:H 薄膜则具有最大的摩擦因数 0.26。 另外 LY12 基体上 W-C:H 薄膜在运转 4.87×10⁴转后 被磨穿,而其他 4 种基体上 W-C:H 薄膜在运转 7.5× 10⁴转后依然处于好的摩擦状态。

度为11.56 GPa, 弹性模量为128.34 GPa。

摩擦试验后,观察了磨损表面的形貌并测量了磨 损率,图6给出了TC4基体上W-C:H薄膜的磨痕及 与其对磨9Cr18钢球磨斑的形貌,同时对其他几种基 体上W-C:H薄膜的磨痕及与其对磨9Cr18钢球磨 斑形貌进行了观察并计算了磨损率,表2给出了5种 基体上W-C:H薄膜磨痕及对磨9Cr18钢球磨斑的 磨损率计算结果。由表2可得到,40Cr、9Cr18、GCr15 及TC4基体上W-C:H薄膜的磨损率均在2×10⁻⁷ mm³/(N·m)左右。

表 2 不同金属基体上 W-C:H 薄膜与 9Cr18 钢球 对磨时的磨损率测试结果

Tab.2 Wear rate results of W-C:H films deposited on different metal substrates sliding against 9Cr18 ball in dry condition

基体材料	薄膜磨损率/	9Cr18 球磨损率/	总磨损率/
	$10^{-7} \text{ mm}^3 (N \cdot m)^{-1}$	$10^{-9}mm^3(N\!\cdot\!m)^{-1}$	$10^{-7} \text{ mm}^3 (N \cdot m)^{-1}$
40Cr	1.95	2.17	1.97
9Cr18	1.68	3.22	1.71
GCr15	2.12	2.30	2.15
TC4	1.84	6.15	1.90
LY12	191.00	146000.00	1651.00

相对应的钢球磨损率则在 10⁻⁹ mm³/(N·m)量 级,摩擦体系的总磨损率为 2×10⁻⁷ mm³/(N·m)左 右;而对于 LY12,薄膜及钢球的磨损率分别为 1.91× 10⁻⁵ mm³/(N·m)和 1.46×10⁻⁴ mm³/(N·m),主要是 因为此时 Al 合金上薄膜已磨穿,在磨穿的瞬间,Al 合 金与钢球直接剧烈的磨损,导致整个摩擦体系磨损率 急剧上升,达到了 1.651×10⁻⁴ mm³/(N·m)。不同摩 擦体系摩擦因数及磨损率的不同主要是由基体的硬 度,以及表面粗糙度的不同造成的。

— 59 —

Fig. 6 Wear profile of W-C:H films deposited on Ti alloy substrate and 9Cr18 ball in dry sliding condition

2.3 薄膜在脂润滑条件下的摩擦磨损性能

从图 7 可以看到,5 种摩擦体系在摩擦运转过程中 均非常平稳,对于 40Cr 等基体,运转 7.5×10⁴转后,依然 处于良好的润滑运转状态。

图 7 不同金属基体上 W-C:H 薄膜在 PFPE 脂润滑条件下的摩擦因数测试结果

Fig. 7 Friction coefficients of the W-C:H films deposited on different metal substrates in PFPE grease lubrication condition

摩擦试验完成后,将薄膜及钢球上的润滑脂擦除 洗净后观察了5种摩擦体系薄膜磨痕和钢球磨斑的 表面形貌(图8)。根据磨痕和磨斑的磨损体积计算 的磨损率结果如表3所示。 表 3 PFPE 脂润滑条件下 W-C:H 薄膜的磨损率 Tab. 3 Wear rate of W-C:H films under grease lubrication condition

薄膜磨损率/ 其休材料 $10^{-8} \text{ mm}^3 (\text{ N} \cdot \text{m})^{-1} 10^{-8} \text{ mm}^3 (\text{ N} \cdot \text{m})^{-1} 10^{-8} \text{ mm}^3 (\text{ N} \cdot \text{m})^{-1}$ 3.01 1.54 4.55 40Cr 9Cr18 3.85 1.75 5.60 GCr15 3.74 2.64 6.38 Ti allov 5.76 2.18 7.94 Al alloy 47.7 2.31 50.01

由表3可得到, PFPE 脂润滑条件下, 40Cr、 9Cr18、GCr15及TC4基体上W-C:H薄膜、钢球以及 摩擦体系总磨损率均在10⁻⁸mm³/(N·m)量级,且总 磨损率则由4.55×10⁻⁸mm³/(N·m)增加到7.94× 10⁻⁸mm³/(N·m),不同基体摩擦体系总磨损率排序 为:40Cr<9Cr18<GCr15<TC4。对于LY12,薄膜及钢 球的磨损率分别为47.4×10⁻⁸mm³/(N·m)和2.31× 10⁻⁸mm³/(N·m),总磨损率为5.01×10⁻⁷mm³/(N· m)。由此可知, PFPE 脂润滑条件下可显著提高薄膜 摩擦体系的摩擦学性能。

- 60 -

图 9 和图 10 为不同金属基体上 W-C:H 薄膜在 两种条件下的摩擦因数及磨损率结果。

图9 不同金属基体上 W-C:H 薄膜摩擦因数测试结果比较

- 图 10 不同金属基体上 W-C:H 薄膜磨损率测试结果比较 (未包括 Al 合金上薄膜磨穿的情况)
- Fig. 10 Comparison of friction coefficient results for W-C:H films deposited on different metal substrates

可知 PFPE 脂润滑条件下得到的摩擦因数及磨 损率要小于干摩擦条件,并且在 PFPE 脂润滑条件下 基体材料对薄膜摩擦磨损性能的影响要小得多。脂 润滑条件下 40Cr、9Cr18、GCr15、TC4 上 W-C:H 薄 膜与 9Cr18 钢球摩擦体系的总磨损率分别为干摩擦 条件下的 25%、30%、30%及 40%,相当于分别减少 了 75%、70%、70%及 60%的磨损。结果表明,PFPE 润滑脂可显著降低 W-C:H 薄膜与 9Cr18 钢球摩擦 副的摩擦因数和磨损率。

3 结论

(1)采用非平衡磁控溅射技术利用 WC 靶材在 Ar/ C_2H_2 气氛中沉积了厚度约为1 μ m,硬度为11.56 GPa,弹性模量为128.34 GPa,与基体的附着力为645 mN 的 W-C:H 薄膜。

(2) 干摩擦条件下, 基体材料对 W-C:H 薄膜的 摩擦磨损性能影响较大。40Cr 基体上 W-C:H 薄膜 具有最低的平均摩擦因数 0.12, LY12 基体上 W-C: H 薄膜与 9Cr18 钢球摩擦体系具有最大的磨损率 1.65×10⁻⁴ mm³/(N·m)。40Cr、9Cr18、GCr15 和 TC4 上 W-C:H 薄膜与 9Cr18 钢球摩擦体系的磨损率均 在 2×10⁻⁷ mm³/(N·m)左右。

(3) PFPE 脂润滑条件下,基体材料对 W-C:H 薄膜的摩擦磨损性能的影响要小得多。40Cr、9Cr18、 宇航材料工艺 http://www.yhclgy.com 2015 年 第1 期 GCr15、LY12 和 TC4 上 W-C:H 薄膜摩擦因数在 0.15 到 0.21 间变化,摩擦体系总的磨损率在 10⁻⁸ mm ³/(N·m)量级。

(4) 与干摩擦条件相比, PFPE 脂润滑条件下, 40Cr、9Cr18、GCr15、TC4 上 W-C:H 薄膜与 9Cr18 钢 球摩擦体系的磨损可减少 60% ~75%。

参考文献

[1] Chiu M C, Hsieh W P, Ho W Y. Thermal stability of Crdoped diamond-like carbon films synthesized by cathodic arc evaporation[J]. Thin Solid Films,2005,476:258-263

[2] Ban M, Ryoji M, Fujii S, et al. Tribological characteristics of Si-containing diamond-like carbon films under oil-lubrication[J]. Wear, 2002, 253; 331-338

[3] Peters A M, Nastasi M. Titanium-doped hydrogenated DLC coatings deposited by a novel OMCVD-PIIP technique[J]. Surf. Coat. Technol. ,2003,167:11-15

[4] Rincon C, Zambrano G, Carvajal A. Tungsten carbide/ diamond-like carbon multilayer coatings on steel for tribological applications[J]. Surf. Coat. Technol. ,2001,148:277-283

[5] Liu Cui, Gou Wei, Mu Zongxin, et al. Study of performances and structures of Ti doped DLC films[J]. Journal of Functional Materials, 2005, 36;301-303

[6] Nie Chao-Yin, Ando Akiro, Lu Chuncan, et al. Effect of Ti-doping and stress relaxation layer on adhesion strength of DLC thin film[J]. Journal of Functional Materials, 2009, 40:226-229

[7] Zheng J, Zhou H, Sang R P. Structure and mechanical properties of tungsten-containing hydrogenated diamond like carbon coatings for space applications [J]. Physics Procedia, 2011, 18:245-250

[8] Czyzniewski A. The effect of air humidity on tribological behaviours of W-C: H coatings with different tungsten contents sliding against bearing steel[J]. Wear, 2012, 296:547-557

[9] Krzan B, Farkas F, Vizintin J. Tribological behavior of tungsten-doped DLC coating under oil lubrication [J]. Tribol. Int. ,2009,42:229-235

[10] Vengudusamy B, Green J H, Lamb G D. Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts[J]. Tribol. Int. ,2011,44:165-174

[~11~] Krantz T L, Cooper C V, Townsend D P. Increased Surface Fatigue Lives of Spur Geras by Application of a Coating[R] , NASA/TM-2003-212463

[12] Zhou H, Zheng J, Sang R P. Proceedings of ESMATS, 2011, ESA SP-698

[13] Kalin M, Vizintin J. The tribological performance of DLC-coated gears lubricated with biodegradable oil in various pinion/gear material combinations[J]. Wear, 2005, 259:1270-1280

[14] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992 (7):1564-1583

[15] Bhushan B. Nanotribology and Nanomechanics: An Introduction[M]. Springer, Berlin, 2008 (编辑 吴坚) — 61—