碳化锆液相陶瓷前驱体的制备及陶瓷化

刘丹 邱文丰 蔡涛 孙娅楠 赵彤

(中国科学院化学研究所,北京 100190)

文 摘 以聚锆氧烷 PNZ 为锆源、炔丙基酚醛 PN 为碳源制备了一种 ZrC 液相陶瓷前驱体 PNZ-PN,该前 驱体经1600℃热解能够转化为高度结晶的 ZrC 陶瓷。通过 FT-IR、DSC、TGA 对前驱体的固化过程及固化样 的热失重行为进行了分析;通过 XRD、元素分析和 SEM 对热解产物的晶相组成及微观形貌进行了分析。结果 表明:1200℃以下,热解产物主要是 ZrO₂,1400℃时开始发生碳热还原反应出现结晶度较小的 ZrC,经1600℃ 热解后可完全转化为 ZrC;PN 的加入量会影响热解过程中陶瓷样品的 ZrO₂ 晶相及1600℃热解产物的碳含量, 通过调整 PN 的加入量最终可得到自由碳含量1.66%、近似纯相的 ZrC 陶瓷;得到的陶瓷粒子 Zr、C 元素分布 均匀、粒径主要分布为100~200 nm。

关键词 碳热还原反应,固化,热解,微观形貌 中图分类号:TQ32 DOI:10.3969/j.issn.1007-2330.2014.01.016

Preparation and Ceramization of Liquid ZrC Precursor

LIU Dan QIU Wenfeng CAI Tao SUN Yanan ZHAO Tong

(Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190)

Abstract A novel liquid precursor for ZrC was prepared by blending of polyzirconoxanesal (PNZ) and propargyl modified novolac resin(PN). The precursor could be converted into ZrC upon heat treatment at 1 600°C. The crosslinking behavior of PNZ-PN precursor was characterized by FT-IR and DSC. The thermal stability of the cured PNZ-PN was evaluated by TGA. The microstructure and components of the ceramic samples were analyzed by XRD, SEM and elements analysis. The results showed that the ceramic sample consisted of ZrO_2 below 1 200°C and low crystalline ZrC appeared initially at 1 400°C due to carbothermal reduction. At 1 600°C, the ZrO_2 could be converted into pure ZrC completely. The ZrO_2 crystalline phase and carbon content in 1 600°C ceramic samples could be controlled by the amount of PN to get near pure phase ZrC with free carbon of 1.66%. The Zr, and C elements are well distributed in the ceramic sample consisted of high crystalline degrees of ZrC particles with a size distribution of 100 to 200 nm.

Key words Carbothermal reduction, Cross-linking behavior, Pyrolysis, Microstructure

0 引言

近年来,超高温陶瓷材料成为各国研究者的研究 热点,并受到广泛的关注^[1-3]。超高温陶瓷材料包括 难熔金属氧化物、碳化物和硼化物等,已成为新型超 高速飞行器最具前景的候选材料^[4-8]。ZrC 成为目前 最受关注的超高温材料之一^[9-11]。ZrC 优异的性能 使其在切割刀具、耐磨部件、核燃料行业、陶瓷基复合 材料等领域具有广泛的应用^[12-14]。

目前,制备 ZrC 多采用固相法和气相法,主要有

ZrO₂ 与碳反应的还原合成法、金属 Zr 与碳反应的化 合法及气相沉积法等,但存在制备温度高、粉体粒径 比较大,烧结活性差、难于加工等缺陷^[15-16]。溶胶凝 胶法是液相法中制备超细 ZrC 粉体普遍采用的一种 方法,其制成温度低、粒子分布均匀,但体系的稳定较 差且制备工艺时间长、成本高^[17-18]。液相前驱体转 化法对设备要求简单,能大大缩短工艺周期,可在较 低温度下将有机物转化为无机陶瓷,是一种极具发展 潜力的制备方法^[19-21]。

收稿日期:2013-10-30

作者简介:刘丹,1986年出生,硕士,主要从事超高温陶瓷前驱体的制备。E-mail:liudanyg@iccas.ac.cn 通讯作者:邱文丰,E-mail:qiuwf@iccas.ac.cn

本文以聚锆氧烷、炔丙基酚醛为原料制备了 ZrC 前驱体,通过液相前驱体转化法在相对较低的温度下 得到了 ZrC 陶瓷,对前驱体的固化过程、热解机理及 热解产物的晶相组成、微观形貌等进行了分析。

1 实验

1.1 前驱体的制备

告源:聚锆氧烷 PNZ,按文献[22]报道的方法制备。通过水解缩聚反应合成出以 Zr-O-Zr 为主链的含锆聚合物,该聚合物为棕红色黏稠树脂,可溶于甲苯、二甲苯等弱极性溶剂。碳源:炔丙基酚醛 PN,自制,900℃氮气气氛残碳为55%。

将 PNZ 配制成固含量为 70%、黏度为 150 mPa·s、 锆含量为 26% 的二甲苯溶液,将一定量的 PN 加入到 PNZ 溶液中,搅拌后即可得到均相、透明的棕红色碳化 锆液相前驱体 PNZ-PN。通过加入不同量的 PN 制备了 PNZ/PN 质量比为 6、8.2、12.7 的三种前驱体,分别命名 为 PNZ-PN-1、PNZ-PN-2、PNZ-PN-3。

1.2 前驱体的固化

将前驱体置于烘箱中进行固化,固化程序为: 120℃/2 h+150℃/2h+200℃/2 h+250℃/2 h。

1.3 前驱体的陶瓷化

将前驱体的固化样品在1600℃Ar 气氛下热处 理2h(升温速度为5℃/min),降至室温即得到黑色 的ZrC 陶瓷粉末。

1.4 表征

固化过程的红外分析(FT-IR):采用德国布鲁克 公司生产的 Bruker Tensor 27 型红外分析仪于室温下 对样品进行红外分析。

DSC:以N₂ 为测试氛围,升温速度为 10℃/min, 测试范围为 30~450℃,在瑞士梅特勒公司生产的 DSC 822e 型示差扫描量热分析仪上进行测试。

TGA:以 N₂ 为测试氛围,升温速度为 10℃/min, 测试范围为室温~1 300℃,在瑞士梅特勒公司生产 的 TGA/SDTA851 型热分析仪上进行测试。

XRD:采用 CuKα (λ=0.154 056 nm)辐射源,发 射电压为 40 kV,电流为 200 mA。测试扫描范围为 3°~80°,扫描速度为 8°/min;采用日本岛津公司生产 的 D/MAX-2400 型 X-射线粉末衍射仪上对高温陶 瓷化后的样品进行测试。

陶瓷样品的元素分析:采用美国 Thermal 公司生产的 IRIS Intrepid II型电感耦合等离子光谱仪(ICP-OES)测试样品的 Zr 元素;采用美国 Leco 公司生产的 CS-244 型碳硫分析仪测定样品中的 C 元素含量。

SEM:采用日本日立公司生产的 Hitachi S-4800 场发射扫描电镜在 15 kV 的加速电压下观察样品的形貌。

— 80 —

2 结果与讨论

2.1 PNZ-PN 的固化放热分析

对原料及固化样品做了红外分析,如图 1 所示。 PNZ-PN 前驱体的红外光谱[图 1(c)]包含了 PNZ 和 PN 的特征吸收峰,类似于二者的红外直接叠加得 到,说明 PNZ 与 PN 混合过程中并没有发生反应,仅 仅发生了物理混合。样品经过 250℃ 固化后,3 287 cm⁻¹ 处炔基 = C—H 伸缩振动峰和 2 123 cm⁻¹ 处炔 基 C = C 伸缩振动峰消失,说明固化交联过程中炔丙 基酚醛的 C = C 三键发生了反应。同时,在1 553 和 1 451 cm⁻¹ 出现了两个较强的吸收谱带。

图 1 PNZ、PN、PNZ-PN 及其固化样的红外谱图

Fig. 1 FTIR spectra of PNZ_PN_PNZ-PN and cured PNZ-PN

采用 DSC 对 PNZ-PN 前驱体的固化放热过程进行了研究。图 2 中显示:前驱体在 226.55 ~ 306.34℃存在一较宽的放热峰,峰值温度为 269.34 ℃,放热量为 105.55 J/g,其放热峰主要是由于炔丙基酚醛的固化交联引起。

Fig. 2 DSC curve of PNZ-PN precursor

2.2 PNZ-PN 的热失重分析

对 PNZ-PN 固化样进行了热失重分析(图3),可 以看出:,RT~250℃样品缓慢失重约为 3%,主要是 前驱体中残余溶剂的挥发;在 300~650℃发生了约 22%的失重,这一温度范围共包括两部分失重,主要 是由于前驱体固化样 PNZ 组分中有机基团的离去及 炔丙基酚醛的分解,发生了有机-无机转化过程,峰 值温度分别在 419.7 和 472.2℃;650℃之后失重较

宇航材料工艺 http://www.yhclgy.com 2014 年 第1期

为平缓,温度升至1200℃时,又出现继续失重的趋势,可能由于此温度开始发生了碳热还原反应,最终 1300℃残重为67.76%。

2.3 PNZ-PN 的陶瓷化过程

由图 4 可以看出:经1 000、1 200℃热处理后,样 品为结晶的 t-ZrO₂;随着处理温度的提高,1 400℃时 t-ZrO₂ 依然存在,并出现 m-ZrO₂,此外从 XRD 图中 可以看到在 33.2°、38.6°、55.6°、66.3°及 69.8°位 置有较小强度的 ZrC 衍射峰产生,表明体系中的 ZrO₂ 与 PN 热解产生的自由碳开始发生了碳热还原 反应;1 500℃时 ZrC 衍射峰越发尖锐,仍有部分 t-ZrO₂、m-ZrO₂存在;进一步提高热处理温度至 1 600℃,碳热还原反应发生完全,t-ZrO₂、m-ZrO₂ 衍射 峰消失,体系中仅存在 ZrC 的衍射峰。

此外,还通过 XRD 研究了不同 PN 加入量对热 解产物晶相的影响,将前驱体固化、随后将固化样进 行 1 500℃高温热解。从图 5 显示的 XRD 结果中可 以看出:当 PNZ-PN 质量比较小(PNZ-PN-1),即 PN 加入量较多时,1 500℃热解产物主要为结晶的 ZrC、t-ZrO₂,只有极少量的 m-ZrO₂;当 PNZ-PN 质量 比较大(PNZ-PN-3),即 PN 加入量较少时,1 500℃ 热解产物主要为结晶的 ZrC、m-ZrO₂ 和极少量的 t-ZrO₂,此结果说明 PN 中碳的加入会影响高温热解过 程中 ZrO₂ 的晶型转变。

宇航材料工艺 http://www.yhclgy.com 2014 年 第1期

图 5 不同 PNZ-PN 样品 1 500℃ 热解的 XRD 图

Fig. 5 $\,$ XRD patterns of PNZ–PN samples at 1 500 $^\circ\!\!\mathrm{C}$

随后,将样品进行 1 600℃ 高温热解(图 6),由 XRD 结果表明经 1 600℃高温热解后 ZrO₂ 衍射峰已 经消失,表明体系中的 ZrO₂ 全部与 PN 热解产生的 自由碳发生了碳热还原反应生成面心立方的 ZrC 晶 体,三种前驱体均可通过 1 600℃ 高温热解转化为 ZrC 陶瓷。

图 6 不同 PNZ-PN 样品 1 600℃ 热解的 XRD 图

Fig. 6 XRD patterns of PNZ-PN samples at 1 600°C

对1600℃陶瓷样品进行了元素分析,结果如表 1 所示: PNZ-PN 前驱体的陶瓷样品含有 Zr、C 及少 量的 O.PNZ-PN-3 前驱体经高温热解得到的陶瓷样 品纯度较高,经验式接近理论组成,自由碳含量只有 1.66%,而PNZ-PN-2陶瓷样品中碳含量略微过量, 自由碳含量为 6.99%, PNZ-PN-1 陶瓷样品中碳含 量过量较多,自由碳含量达到13.06%。结果表明: PN 加入量多会导致自由碳含量增加,进而会影响其 高温抗氧化性能,而在前驱体中 PN 本身提供的碳并 不能够完全满足碳热还原反应所需的碳,碳热还原反 应的完成可能是由于高温热解过程中前驱体 PNZ 中 的乙酰丙酮与 PN 的炔键发生了缩聚反应,从而导致 PNZ 中的乙酰丙酮为碳热还原反应提供了部分碳 源。此外,虽然1600℃热解的陶瓷样品 XRD 谱图中 都显示出较高纯度的 ZrC 结晶衍射峰,但元素分析结 果显示仍有少量氧存在,可以认为,体系中的0一部 分与 Zr 结合后以 ZrO, 形式存在,还有一部分 O 溶解 于 ZrC 的晶格之中。

— 81 —

表 1 PNZ-PN 样品 1 600℃热解的元素分析数据

Tab. 1 Chemical compositions of 1 600°C ceramic

samples from EA analysis				wt%	
样品	Zr	С	0	经验式	
PNZ-PN-1	73.26	22.72	4.02	ZrC _{2.35} O _{0.31}	
PNZ-PN-2	78.79	17.38	3.83	$\rm ZrC_{1.67}O_{0.28}$	
PNZ-PN-3	83.40	12.65	3.95	$\rm ZrC_{1.15}O_{0.27}$	

2.4 PNZ-PN 陶瓷样品的微观形貌分析

通过扫描电镜对 PNZ-PN 经1600℃ 热解后的

(a) 低倍

陶瓷样品的微观形貌进行了观察,结果如图 7 所示: 低倍数下,样品表面较为平整,样品分布均匀;但在高 倍数下可以明显看到孔洞的存在,此现象是由高温碳 热还原反应所导致的;ZrO₂ 粒子与周围的游离 C 发 生反应生成 ZrC,同时伴随着气体副产物的生成,从 而导致孔洞的形成。陶瓷粒子呈多边形结构,颗粒大 小比较均匀,最终得到的陶瓷粒子尺度为 100 ~ 200 nm,而通过 Scherer equation:Dhkl = *Kλ*/βcosθ,计算的 ZrC 的晶粒尺寸大约为 26.3 nm,说明高温热解形成 的 ZrC 陶瓷粒子有聚集现象。

(b) 高倍

图 7 PNZ-PN 样品 1 600℃ 热解的 SEM 图 Fig. 7 SEM images of PNZ-PN ceramic sample at 1 600℃

3 结论

(1)采用可控水解反应合成了聚锆氧烷 PNZ,以 PNZ 为锆源、炔丙基酚醛 PN 为碳源制备了一种新型 的 ZrC 液相陶瓷前驱体 PNZ-PN。

(2) PN 的加入量不同会影响热解过程中陶瓷样 品的 ZrO, 晶相及1600℃热解产物的碳含量。

(3)前驱体经1 600℃热解能够转化为高度结晶的 ZrC 陶瓷,自由碳含量可控制在1.66%。

(4)1 600℃热解后得到的陶瓷化样品中陶瓷粒子分布均匀、粒径主要分布在 100~200 nm。

参考文献

[1] Han W B, Hu P, Zhang X H, et al. High-temperature oxidation at 1 900°C of $ZrB_2 - x$ SiC ultrahigh-temperature ceramic composites[J]. Journal of the American Ceramic Society, 2008, 91:3328-3334

 $[\,2\,]$ Savino R, De Stefano Fumo M, Silvestroni L, et al. Arcjet testing on HfB2 and HfC-based ultra-high temperature ceramic materials[J]. Journal of the European Ceramic Society, 2008, 28: 1899–1907

[3] Karlsdottir S N, Halloran J W. Rapid oxidation characterization of ultra-high temperature ceramics[J]. Journal of the American Ceramic Society, 2007, 90:3233-3238

[4] Savino R, De Stefano Fumo M, Paterna D, et al. Arc-jet testing of ultra-high-temperature-ceramics [J]. Aerospace Science and Technology, 2010, 14:178–187 [5] Eakins E, Jayaseelan D D, Lee W E. Toward oxidationresistant ZrB₂-SiC ultra high temperature ceramics [J]. Metallurgical and Materials Transactions A,2010,42:878-887

[6] Li Q G,Zhou H J,Dong S M,et al. Fabrication of a ZrC -SiC matrix for ceramic matrix composites and its properties [J]. Ceramics International,2012,38:4379-4384

[7] Cai T, Qiu W F, Liu D, et al. Synthesis, characterization, and microstructure of hafnium boride-based composite ceramics via preceramic method [J]. Journal of the American Ceramic Society, 2013,96:1999-2004

[8] Lespade P, Richet N, Goursat P. Oxidation resistance of HfB₂ - SiC composites for protection of carbon-based materials [J]. Acta Astronaut, 2007, 60:858-864

[9] Cai T, Qiu W F, Liu D, et al. Synthesis of soluble polyyne polymers containing zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics [J]. Dalton Transactions, 2013, 42 ;4285-4290

[10] Yu Z J, Yang L, Zhan J Y, et al. Preparation, crosslinking and ceramization of AHPCS/Cp₂ZrCl₂ hybrid precursors for SiC/ZrC/C composites [J]. Journal of the European Ceramic Society, 2012, 32:1291-1298

[11] Gendre M, Maître A, Trolliard G. A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders[J]. Acta Materialia, 2010, 58:2598-2609

[12] Chu A M, Qin M L, Rafi-ud-din, et al. Carbothermal synthesis of ZrC powders using a combustion synthesis precursor 宇航材料工艺 http://www.yhclgy.com 2014 年 第1期

— 82 —

[J]. Journal of Refractory Metals and Hard Materials, 2013, 36: 204-210

[13] Nam Y S, Cui X M, Jeong L, et al. Fabrication and characterization of zirconium carbide(ZrC) nanofibers with thermal storage property[J]. Thin Solid Films, 2009, 517:6531-6538

[14] Ji Z H, Ye L, Tao X Y, et al. Synthesis of ordered mesoporous ZrC/C nanocomposite via magnesiothermic reduction at low temperature [J]. Materials Letters, 2012, 71:88–90

[15] Mahday A A, Sherif EI-Eskandarany M, Ahmed H A, et al. Mechanically induced solid state carburization for fabrication of nanocrystalline ZrC refractory material powders [J]. Journal of Alloys and Compounds Journal of Alloys and Compounds, 2000, 299:244-253

[16] Tsuchida T, Kawaguchi M, Kodaira K. Synthesis of ZrC and ZrN in air from mechanically activated Zr-C powder mixtures [J]. Solid State Ionics Solid State Ionics, 1997, 101:149-154

[17] Dollé M, Gosset D, Bogicevic C, et al. Synthesis of nanosized zirconium carbide by a sol-gel route[J]. Journal of the European Ceramic Society,2007,27;2061-2067 [18] Sacks M D, Wang C A, Yang Z H, et al. Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J]. Journal of Material Science, 2004, 39:6057–6066

[19] Colombo P, Modesti M. Silicon oxycarbide ceramic foams from a preceramic polymer[J]. Journal of the American Ceramic Society, 1999, 82:573-578

[20] Cai T, Qiu W F, Liu D, et al. Synthesis of ZrC-SiC Powders by a Preceramic Solution Route[J]. Journal of the American Ceramic Society, 2013, 96:3023-3026

[21] Xie C M, Chen M W, Wei X, et al. Synthesis and microstructure of zirconium diboride formed from polymeric precursor pyrolysis[J]. Journal of the American Ceramic Society, 2012, 95: 866–869

[22] Xie Y L, Sanders T H, Speyer R F. Solution-based synthesis of submicrometer ZrB_2 and ZrB_2 -TaB₂[J]. Journal of the American Ceramic Society Journal of the American Ceramic Society 2008,91:1469-1474

(编辑 吴坚)

(上接第71页)

参考文献

[1] Homrighausen C L, Keller T M. High-temperature elastomers from silarylene-siloxane-diacetylene linear polymer[J]. J.Polym. Sci. Part A: Polym. Chem. ,2002,40:88–94

[2] Kolel-Veetil M K, Keller T M. The effects of concentration dilution of cross-linkable diacetylenes on the plasticity of poly (m-carborane-disiloxanedi-acetylene) s [J]. J. Mater. Chem., 2003,13:1652-1656

[3] Kolel-Veetil M K, Backbam H W, Keller T M. Dependence of thermal properties on the copolymer sequence in diacetylene-containing polycarboranylene-siloxanes[J]. Chem. Mater., 2004,16:3162-3167

[4] Itoh M, Mitsuzuka M, Iwata K, et al. A novel synthesis and extremely high thermal stability of poly[(phenylsilylene)ethynylene – 1, 3-phenyleneethynyl-ene][J]. Macromolecules, 1994,27:7917–7919

[5] Itoh M, Inoue K, Iwata K, et al. A heat-resistant silicon-based polymr[J]. Adv. Mater., 1997,9:1187-1190

[6] Itoh M, Inoue K, Hirayama N, et al. Fiber reinforced plastics using a new heat-resistant silicon based polymer[J]. J.

Mater. Sci. ,2002,37:3795-3801

[7] Wang F, Zhang J, Huang J, et al. Synthesis and characterization of Poly (dimethylsilyleneethynylenephenyleneethynylene) terminated with phenylacetylene [J]. Polym.
Bull. ,2006,56:19-26

[8] Gao F, Zhang L, Huang F, et al. Synthesis and characterization of poly (tetramethyldisilioxane-ethynyenephenyleneethynylene) resins[J]. J. Polym. Res. ,2011,18:163-169

[9] Wang R, Fang L, Xu C H. Synthesis, characterization, and thermal properties of new silarylene-siloxane-acetylene polymers[J]. Eur. Polym. J. ,2010,46;465–471

[10] Wang R, Liu W, Xu C H, et al. Synthesis, characterization and properties of novel phenylene-silazane-acetylene polymers[J]. Polymer,2010,51:5970-5976

[11] Bucca D, Keller T M. Thermally and oxidatively stable thermosets derived from preceramic momomers [J]. J. Polym. Sci. Part A:Polym. Chem. ,1997,35:1033-1038

(编辑 吴坚)