PM-TiAl 基合金热处理及其性能

马明珠^{1,4} 黄源珀¹ 薛志勇¹ 李冬青² 李双寿³

(1 华北电力大学,北京 102206)
(2 哈尔滨工业大学,哈尔滨 150001)
(3 清华大学,北京 100084)
(4 天润曲轴股份有限公司,文登 264400)

文 摘 为了优化 TiAl 合金的使用性能,本文研究了热等静压后的 PM-TiAl 基合金经过热处理后显微组 织的变化情况及力学性能,发现其在热处理温度为1355℃为全片层组织,在1335℃为双态组织。全片层组织 常温下的抗拉强度为446 MPa,随着温度的升高而增加;屈服强度为386 MPa,随着温度的升高而降低。 关键词 TiAl,热处理,全片层组织,相变

Heat Treatment and Performance of PM-TiAl Base Alloy

Ma Mingzhu^{1,4} Huang Yuanxun¹ Xue Zhiyong¹ Li Dongqing² Li Shuangshou³ (1 North China Electric Power University, Beijing 102206) (2 Harbin Institute of Technology, Harbin 150001) (3 Tsinghua University, Beijing 100084) (4 Tianrun Crankshaft. Co., LTD, Wendeng 264400)

Abstract In order to optimize the usability, microstructure and mechanical property of TiAl based alloy after hot isostatic pressing and hot treatment was studied. After heat-treatment of 1 355 °C, organization of TiAl based alloy transformed to full lamellar microstructure. After heat-treatment of 1 335 °C, organization of TiAl based alloy transformed to double pattern microstructure. Tensile strength of full lamellar TiAl under room temperature is 446 MPa, and will increase with temperature; yield strength of full lamellar TiAl under room temperature is 386 MPa, and will increase with temperature.

Key words TiAl, Heat treatment, Full lamellar organization, Phase transition

0 引言

随着航天工业的飞速发展,TiAl 合金已经逐渐显示出低密度、高熔点、良好的高温强度以及出色的抗氧化、抗蠕变和抗疲劳性能的优点,成为具有发展前景的航天材料之一。TiAl 合金的使用能够大大降低航天发动机、飞行器的结构质量,提高发动机的推重比。但同时 TiAl 合金的室温塑韧性较低,室温加工性能较差,一直限制了其在实际生产中的应用。由于TiAl 合金铸态组织通常是粗大的片层状组织,其室温延性很低,只有通过合金化、变形热处理和特殊热处理等方法才能显著细化晶粒,将铸态 TiAl 合金作用于高温结构材料。文献[1]表明,利用气体雾化法已经成功地研制出 Ti-46Al-2Cr-2Nb-0.2B-0.1W 球

形合金粉末,粉末的粒径呈正态分布,主要分布在50 ~190 μm之间;利用热等静压工艺制备的粉末冶金 TiAl 合金在1200和1300℃下分别热压1h后可以 得到显微组织细小的TiAl 基合金,Cr的分布比较均 匀,但是存在一些Nb的扩散不完全现象。通过后序 热等静压工艺可以改善合金元素在显微组织中的均 匀分布^[2]。本文期望通过研究PM-TiAl 合金的热处 理工艺及其组织性能的关系,优化 PM-TiAl 合金的 使用性能,推动其走向实用。

1 实验

1.1 材料

采用粉末冶金的方法制备 TiAl 合金,并对其进行热等静压处理。合金的成分为 Ti-47Al-2Cr-2Nb

作者简介:马明珠,1984年出生,硕士,主要从事 TiAl 新材料与钢材锻件的热处理研究

联系作者:薛志勇, E-mail: xuezy101@163. com

收稿日期:2011-11-28

基金项目:航天科技创新基金重点资助项目(20094030090);中央高校基本科研业务费资助(09MG27);航天创新基金重点项目(CASC200906)

宇航材料工艺 http://www.yhclgy.com 2012 年 第5期

-0.2W-0.5B(at%),其热等静压温度为1200℃,压 力≥130 MPa,保温保压4h。其合金成分见表1。

表1 TiAl 基合金化学成分

	Tab. 1	Composi	at %			
Ti	Al	Cr	Nb	W	В	-
48.3	47	2	2	0.2	0.5	-

1.2 热处理工艺

结合 TiAl 基合金试样的 DSC 分析曲线和 Ti-Al 二元相图,制定 TiAl 基合金的热处理工艺见表 2。

表 2 TiAl 基合金热处理工艺

Tab. 2 Heat Treatment Process of TiAl alloys

处理	热处理	保温时	冷却方式	
方案	温度/℃	间/mir		
1	1355	30	随炉冷却	
2	1355	30	放入900℃的加热炉中时效30 min 后空冷	
3	1335	30	随炉冷却	
4	1335	30	放入900℃的加热炉中时效30 min 后空冷	
5	1355	30	真空环境、随炉冷却	

1.3 测试方法

1.3.1 DSC 测试

对 PM-TiAl 基合金试样进行了 DSC 分析, 仪器 型号为 DSC Q2000。

1.3.2 拉伸试验

采用北京科技大学新金属材料国家重点实验室的 ss520 型原位拉伸试验机。根据实验设备要求,拉伸试样如图 1 所示,采用线切割方式制得。

图1 拉伸试样示意图

Fig. 1 Diagram of tensile samples

1.3.3 显微组织观察

用 ZEISS EV018 的扫描电镜对试样进行显微组 织观察。

2 结果与分析

2.1 DSC 分析

TiAl 合金共有四种显微组织状态:近γ组织、双态 组织、近全片层组织、全片层组织,如图2所示。

对于 TiAl 基合金的显微组织而言,根据不同的 热处理方式可得到四种类型的典型组织^[3-5]。 (a) NG (b) DP

图 2 TiAl 合金的典型显微结构

Fig. 2 Typical microstructure of TiAl alloys

(1) NG 为等轴近 γ 组织,是在如图 3 所示^[6]Ti-Al 二元相图上刚超过共析温度的 $\alpha+\gamma$ 两相区进行退火热处理,得到由等轴晶粒和包含细小 γ 和 α_2 晶粒的条带状区域晶界,即非均匀的粗大 γ 晶粒并伴有少量的 α_2 粒子。

Fig. 3 Binary phase diagram of TiAl alloy

(2) DP 为双态组织,是在 α+γ 两相区体积分数 大致相等的温度进行退火热处理,得到细小晶粒的 γ 相和 α,相复合组织。

(3)NFL 为近全片层组织,是在 α+γ 两相区中接 近与 α 单相区分界线的温度进行退火热处理,可得 到由 γ/α₂片层团和少量分布于片层团间的等轴 γ 晶 粒组成的近全片层组织。

(4)FL为全片层组织,是在 α 单相区超过与 α+ γ相区分界线 50℃以内进行退火热处理,可得到由 γ/α,片层团组成的全片层组织。

由于 TiAl 基金属间化合物为高温结构材料,在 航空航天工业主要应用其高温性能。据有关材料研 宇航材料工艺 http://www.yhclgy.com 2012年 第5期

— 56 —

究表明^[7], TiAl 基金属间化合物全片层组织的高温 力学性能优于其他的三种。片层具有较高的蠕变特 性^[8],因此选择全片层组织作为研究的内容。

对于 TiAl 合金,由于添加元素种类不同使材料 具有不同的性能,如适量添加 Cr 可提高 TiAl 合金的 延性^[9];添加 Nb 可改善 TiAl 合金的高温抗氧化 性^[10]。由于合金元素的存在,必然对材料的相变温 度产生一定的影响,导致不同成分 TiAl 合金的相变 温度产生一定程度的差异。为确定全片层组织的热 处理温度,本文首先对 TiAl 坯料进行了差热分析。

图 4 为 DSC 曲线。图中出现了两个放热峰,根据 第一个峰判断相变点在1364℃左右,在TiAl 二元相图 中,Ti-47Al 由单相 α 相向 α+γ 双相转变的温度大约 为1350℃,因此可选择热处理温度为1355℃。由于 本文材料供应单位推荐的相变点温度为1315℃,故选 择1335℃作为参考热处理温度。结合 DSC 所得结果 和TiAl 二元相图,确定 TiAl 由 NG 向 FL 转变的温度 为1355℃,制定如表2所示的五种热处理工艺。

2.2 显微组织分析

PM-TiAl 合金显微组织如图 5 所示。

图 5 PM-TiAl 原始组织

Fig. 5 PM-TiAl original microstructure

可以看出粉末冶金所制备的 TiAl 基合金组织非 常均匀,等轴状的 γ 相周围均匀分布着少量的片层 组织,为典型的近 γ 组织。所制备试样晶粒尺寸为 5 ~10 μm。存在两种相,分别由点 1 和点 2 标识出 来,其元素成分如表 3 所示。点 1 和点 2 的扫描曲线 如图 6 所示。由表 3 中 Ti 和 Al 的含量比可以看出, 点 1 、点 2 处, Ti 和 Al 的原子比都近似于 1:1,可见粉 宇航材料工艺 http://www.yhclgy.com 2012年 第5期 末冶金经热等静压的近 γ-TiAl 基合金主要以 TiAl 的形态存在。

位置	Al	W	Nb	Ti	Cr
点 1	48.36	0.45	2.34	46.55	2.30
点 2	48.10	0.30	2.26	47.03	2.31

图 7 为经过表 2 所述五种不同的热处理工艺后 的组织,图中A~E分别对应方案1~5。其中A、B、 E 中 TiAl 基合金已经全部由近γ组织转变为全片层 组织,其中A、B两种热处理没有在真空中进行,试样 的表面氧化比较严重,真空热处理的试样在热处理结 束后,表面仍然保持较好的金属光泽,且同为1355℃ 保温 30 min 后炉冷的工艺,真空条件下所获得的试 样的全片层组织相对细小,不仅高温性能较好,而且 能够保证一定的室温性能。粉末冶金 TiAl 基合金的 力学性能与其显微组织有着密切的联系,显微组织越 细小,室温强度和延性就越高,但是在高温下,TiAl 基 合金的屈服强度随着晶粒尺寸的增加而增加^[2]。A 的晶粒过于粗大,虽然高温性能良好,但是室温塑性 的降低将很大程度上影响其整体性能。C 中仍然存 在着大量的γ晶组织,相变过程进行的很少,只有少 量部分转变为了片层组织。D 因温度较低且保温时 间短,使得仍有一部分没有转化为全片层组织。C和 D的晶粒转变状态表明,在1335℃的条件下进行热 处理,因为相变温度不够,不能够得到完全的片层组 织。最终结果表明,在同样取得了全片层组织的情况

— 57 —

下,E中的晶粒相对细小,不但能满足高温性能,而且 有一定的室温塑性,是五种热处理工艺中最为优良的 一种,因此在后续的热处理中选择1355℃真空热处理30min后随炉冷却。

图 7 不同热处理工艺后的组织

Fig. 7 TiAl alloy microstructure ofter different heat proceessing

从图 7 中可以看出,层片状组织具有类似钢中马 氏体的形貌特征,这与 Ti 具有同素异构的特性有关。 一组层片与相邻层片间存在着确定的晶体学取向关 系,这很难通过热处理改变。不过,由于各种不同取 向的层片组所构成的区域相当于一个晶粒,因此,若 能显著地细化晶粒,将使每个晶粒含有更多的层片结 构,再加上晶粒间晶界的阻挡作用,将可能比较显著 地提高该材料的塑性。

一般认为片层结构晶粒是由高温 α 相在冷却过 程中析出 γ 相,然后 α 相发生 $\alpha \rightarrow \alpha_2$ 有序转变后形成 的^[11]。这说明 TiAl 合金在 1 355 °C 热处理时,合金已 经处于 α -Ti 单相区,在冷却过程中, γ 相沿着 α 相 (0001)面析出,从而形成了片层结构;而在 1 335 °C 时,合金位于 α 相区但靠近 $\alpha/(\alpha+\gamma)$ 温度转变线,部 分发生了 Ti₃Al+TiAl→ α -Ti 相变反应,并在原片层晶 粒晶界处形成 γ 单相等轴晶粒。这样在随后的冷却 中, α -Ti 发生共析反应生成层状结构, γ 单相晶粒保 持不变,使得最终组织为($\alpha_2+\gamma$)片层结构和 γ 单相 晶粒的混合组织形貌,即双态组织。

2.3 力学性能

图 8 为经过 1 355℃热处理后,全片层组织 TiAl 基合金的抗拉强度和屈服强度。可以看出,其抗拉强 度常温时是 446 MPa,随着温度的升高而升高,最高 可达 543 MPa,体现了其高温结构材料的高温强度特 性;屈服强度常温下是 386 MPa,随着温度的升高,其 屈服强度总体呈下降趋势,到 600℃时达到 286 MPa。

3 结论

(1) 在热等静压温度为1 200℃,压力≥130
 MPa,保温保压时间为4h的工艺条件下,制备出了组织均匀的钛铝合金,其组织为近γ组织。

(2)TiAl 合金获得全片层组织的最佳热处理工 艺为在1355℃真空热处理30min 后随炉冷却。而 在1335℃的热处理温度可获得双态组织。

(3)全片层组织的抗拉强度常温下为446 MPa, 随着温度的升高而增加;常温下的屈服强度为386 MPa,随着温度的升高而降低。

参考文献

[1] 张绪虎,郎泽保. TiAl 金属间化合物粉末冶金制备技 术研究[J]. 宇航材料工艺,2007,37(5):53-55

[2] 刘咏,黄伯云,周科朝,等.热等静压对粉末冶金 TiAl 合金显微组织和相成分的影响[J].粉末冶金技术,2001,19 (3):165-169

[3] Chan K S, Kim Y W. Influence of microstructure on cracktip micromechanics and fracture behaviors of a two-phase TiAI alloy[J]. Metall. Trans. A, 1992,23A(6): 1663-1677

[4] Campbell J P, Venkateswara K T, Rithchie R O. The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ -titanium aluminide based intermetallics[J]. Metall. Materal. Trans. A, 1993, 30A(31): 563–577

[5] Chan K S. Toughening mechanisms in titanium aluminides[J]. Metall. Trans. A, 1993,24A(3): 569-583

[6] McCullough C, Valencia J J, Levi C G, et al. Phase equilibria and solidification in Ti-Al alloys[J]. Acta Metallurgica, 1989, 37(5): 1321-1336

[7] Chen W R, Triantafillou J, Beddoes J, et al. Effect of fully lamellar morphology on creep of a near γ -TiAl intermetallic [J]. Intermetallics, 1999(7):171–178

[8] Chen W R, Triantafillou J, Beddoes J, et al. Effect of fully lamellar morphology on creep of a near γ -TiAl intermetallic [J]. Intermetallics, 1999, 7(2): 171–178

[9] Huang S C, HallE L. The effects of Cr additions to binary TiAl-base alloys [J]. Metall Trans. A, 1991, 22A(9): 2619-2627

 $[\,10\,]$ Yoshihara M, Miura K. Effects of Nb addition on oxidation behavior of TiAl $[\,J\,]$. Intermetallics , 1995 , 3(5) ;357–363

[11] 陈进,黄伯云,曲选辉. 热处理对 TiAl 基合金的组织 结构和室温性能的影响[J]. 中南矿冶学院学报,1993,24(3): 378-383

(编辑 李洪泉)

宇航材料工艺 http://www.yhclgy.com 2012 年 第5期

— 58 —