高超声速飞行器 TPS 破损修复涂料

李阳 汪涛

(南京航空航天大学材料科学与技术学院,南京 211106)

文 摘 分别采用环氧树脂和呋喃树脂作为基体混合碳化硅粉末与晶须制备了耐高温修复涂料。以氧— 乙炔烧蚀试验测试涂料的耐高温烧蚀性能,用扫描电子显微镜分析烧蚀后涂料表面的微观形貌,用 X 射线衍 射、表面能谱分析对涂料烧蚀后成分进行分析表征。结果表明:碳化硅粉末与晶须的质量分数比为 8/4 的呋喃 树脂/碳化硅体系涂料具有良好的耐高温烧蚀性能,线烧蚀率与质量烧蚀率分别为 28 μm/s 和 66 mg/s。烧蚀 过程中生成的 SiO₂能在烧蚀表面形成致密的连续层,阻止氧-乙炔焰对试样下层基体的烧蚀,起到保护下层基 体的作用。呋喃树脂/碳化硅体系修复涂料可用于 TPS 破损结构的修复。

关键词 呋喃树脂,环氧树脂,碳化硅,修复涂料,高超声速飞行器,TPS

Repair Coating for TPS of Hypersonic Vehicles

Li Yang Wang Tao

(School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106)

Abstract The high temperature resistant repair coating was prepared by using epoxy resin and furan resin as matrix respectively, which was mixed with SiC powder and whisker. The ablative resistance property was investigated by using oxyacetylene ablation equipment. The materials and microstructures of the ablated samples were characterized by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. It is found that the furan resin/SiC coating with the mass ratio of SiC powder and whisker is 8/4 possesses excellent ablative resistance property. The linear and mass ablative rates are 28 μ m/s and 66 mg/s, respectively. The compact SiO₂ layer generated during the ablation process can cover and protect the matrix. The furan resin/SiC coating can be used to repair the damaged structure of TPS.

Key words Furan resin, Epoxy resin, SiC, Repair coating, Hypersonic vehicle, TPS

0 引言

飞行器以高超声速返回再入大气层时,气动加热 会使其表面达到极高的温度^[1-2]。目前高超声速飞 行器的 TPS 系统一般采用外层覆盖陶瓷刚性防热瓦 结构^[3],较好地解决了飞行器再入阶段的防热问题。 然而,存在着多种因素有可能对热防护结构造成破 坏,如在地面操作中的碰撞、飞行器发射时落下的物 体以及在空间中微流星和空间碎片的撞击等等^[4]。 一旦防热结构出现了破损,在飞行器的再入过程中超 高温气流会顺着破损处进入机体内部,进而导致整个 TPS 系统的失效。因此,先进的 TPS 修复技术是保障 高超声速飞行器可重复使用及安全再入的迫切需求。

国外已针对可重复使用航天运载器 TPS 修复技

术开展了相关研究。美国宇航局对增强碳/碳复合材 料(RCC)防热瓦结构的破损,采用一种胶黏剂 NO-AX^[5]进行粘接修复。该修复材料已经多次在航天飞 行中进行了实验测试,获得了较好的结果。另外,美 国宇航局格伦研究中心研发出一种 GRABER 材 料^[6],以有机树脂混合无机填料制得,用于对增强 碳/碳复合材料防热结构进行裂缝修复。该种材料能 在 120℃固化,并在高温条件下转变成耐高温的陶瓷 材料。经电弧喷射模拟飞行器再入环境实验测试,表 现出了良好的性能。

本文采用环氧树脂和呋喃树脂混合碳化硅粉末 及晶须,依照不同的组分配比制备出环氧树脂/碳化 硅体系与呋喃树脂/碳化硅体系的耐高温修复涂料,

收稿日期:2010-11-05

— 32 —

作者简介:李阳,1985年出生,硕士,主要从事功能涂层材料研究。E-mail: ly_1011@ yeah. net

并对其烧蚀性能以及微观组织结构进行分析讨论。 1 实验

1.1 主要原材料

环氧树脂,蓝星新材料无锡树脂厂;呋喃树脂,南 京道勤建材实业有限公司;聚酰胺树脂,江西省西南 化工有限公司。β-SiC 微粉(1 μm)和β-SiC 晶须 (直径<2.5 μm,长径比≥20)分别由西安众鑫特种材 料有限公司和徐州宏武纳米有限公司提供。

1.2 涂料组分配比

修复涂料的组分及配比为:环氧树脂(呋喃树脂)5份,填料(β-SiC 微粉及晶须)12份(质量比)。 另外β-SiC 微粉与晶须的比例(P/W)选取10/2,8/ 4,0/12(质量比)三种不同比例,用来进行分析比较。

1.3 涂料制备及固化

称取适量环氧树脂(呋喃树脂),依次加入一定 量的β-SiC 微粉、β-SiC 晶须、固化剂以及稀释剂,充 分搅拌均匀。将制得的涂料倒入尺寸为Φ30 mm×10 mm的模具中,放入真空干燥箱,80℃真空固化。将 环氧树脂体系及呋喃树脂体系中 P/W 分别为 10/2、 8/4、0/12 的6种试样依次标记为试样 1[#]~6[#]。

1.4 氧-乙炔烧蚀试验

氧-乙炔烧蚀试验由南京晨光集团有限公司航 天理化分析和无损检测研究所按 GJB323A—1996^[7] 要求进行。

1.5 分析与表征

利用荷兰 PHILIPS XL 30CP 扫描电镜观察烧蚀 表面的形貌,用德国 D8 ADVANCE X 射线衍射仪分 析烧蚀产物物相,用美国 GENESIS 60S 表面能谱仪 分析烧蚀产物的化学成分。

2 结果与讨论

2.1 试样宏观情况分析

对于各体系涂料固化后的试样,填料在树脂基体中分散均匀,由于SiC晶须的密度较低,随着涂料中晶须比例的增加,固化后试样的质量越轻。纤维状的SiC晶须能起到钉扎裂纹和抑制收缩的作用,有效的阻止了试样在固化过程中出现裂纹及收缩的现象,有助于提高材料的强度,进而提高材料抗冲刷抗剥蚀的能力,最终提高抗烧蚀性能。通过对各试样尺寸的测量对比,环氧树脂/SiC体系与呋喃树脂/SiC体系涂料固化后试样的收缩率在SiC粉末与晶须的质量比为8/4时最小,试样的表面质量好,基本无裂纹及气孔等缺陷。

2.2 试样的烧蚀性能

环氧树脂/SiC体系与呋喃树脂/SiC体系涂料固 化后试样的烧蚀性能列于表1。对比两种不同体系 的涂料固化后试样的烧蚀结果,可见呋喃树脂/SiC 体系涂料的线烧蚀率和质量烧蚀率都较低,烧蚀性优 宇航材料工艺 http://www.yhclgy.com 2011年 第4期 于环氧树脂/SiC体系涂料。在环氧树脂/SiC体系几种不同组分配比的涂料中,P/W为8/4的试样的线烧蚀率要远低于另两种配比的试样,而在呋喃树脂/SiC体系不同组分配比的涂料中,P/W为8/4的试样的线烧蚀率也较低。较低的线烧蚀率说明当P/W为8/4时,两种体系涂料的抗烧蚀能力最强。

表1 两种体系的烧蚀性能

Tab. 1 Ablation properties of two types

试样编号	线烧蚀率/μm·s ⁻¹	质量烧蚀率/mg·s ⁻¹
1#	217	108
2#	130	106
3#	348	92
4#	78	70
5#	28	66
6#	36	67

2.3 两种体系涂料的烧蚀机理

环氧树脂和呋喃树脂作为两种体系涂料的基体, 在烧蚀的初始阶段发生热解反应,分解为气体和焦炭,能够吸收一定的热量,并且由于气体的逸出,可以 对材料表面起到热屏蔽的效果。当温度超过1000℃ 后,树脂基体的热解反应基本完成,形成的碳化层能 够起到辐射散热和阻塞热流的作用^[8]。图1中给出 了两种基体树脂的热分析曲线。

 Fig. 1 DTA/TG of furan resin and epoxy resin

 在烧蚀过程中,SiC 也会与氧-乙炔焰发生反应,

— 33 —

吸收大量热量。反应生成的 SiO₂具有较高的耐高温 性能,可以阻碍氧-乙炔焰对下层材料的烧蚀。

环氧树脂/SiC体系涂料固化后试样经烧蚀后表 层出现了明显的剥蚀和揭层,如图2所示。而呋喃树 脂/SiC体系涂料固化后的试样经烧蚀后表面保持完 好,没有出现明显的剥蚀和揭层,如图3所示。这是 由于试样在加热状态下树脂基体的分解、碳化与增强 填料(SiC粉末/晶须)的升华并不完全同步^[9],随着 烧蚀过程的逐步进行,树脂分解后试样表面只剩下裸 露的SiC粉末和晶须,它们在外部气流冲刷的作用下 就会发生剥蚀、揭层等现象。通过两种体系涂料试样 烧蚀后形貌的对比,可以说明以呋喃树脂作为基体的 涂料与SiC粉末/晶须增强填料具有比较良好的烧蚀 匹配性,经过烧蚀后,表面保持完好,未发生明显的剥 蚀、揭层等问题,具有较强的抗烧蚀剥蚀能力。

图 2 2[#]试样烧蚀后宏观形貌 Fig. 2 Macro topography of sample 2[#] after ablated

图 3 5[#]试样烧蚀后形貌 Fig. 3 Macro topography of sample 5[#] after ablated

分别对 2^{*}试样烧蚀后剥落物和 5^{*}试样烧蚀后表 面做 XRD 分析,结果如图 4 所示。

2[#]试样烧蚀后剥落物的主要物质为 SiC, 而 5[#]试 样烧蚀后表面上的主要物质为 SiC、SiO₂、C。由于 SiO₂的衍射峰较强, C 衍射峰被掩盖。

由于氧-乙炔焰流的温度为约3000℃^[7],SiC 在 2700℃升华^[10],表明在试样烧蚀时,SiC 处于完全升 华状态。在 SiC 升华的同时,由于样品存在温度差 异,部分 SiC 没有升华而与氧化性的氧-乙炔焰^[10]发 生反应生成 SiO₂。因为环氧树脂基体与 SiC 粉末/晶 须增强填料的烧蚀匹配性较差,在高速气流冲刷下 SiO₂被带走,使 SiC 不断暴露在燃气流中,导致 SiC 被 不断升华反应掉,无法起到充分的抗烧蚀作用,导致 烧蚀效果较呋喃树脂/SiC 体系涂料略差(图5)。

(a) SEM 照片

图 5 2*试样烧蚀后产物 SEM 照片及 EDS 分析 Fig. 5 SEM photographs and EDS of sample 2[#] after ablated 5[#]试样由于呋喃树脂与 SiC 粉末/晶须增强填料 宇航材料工艺 http://www.yhclgy.com 2011 年 第4期 良好的烧蚀匹配性,SiC氧化生成的SiO₂在烧蚀表面 形成致密的连续层,覆盖在基体表面,阻止了氧-乙 炔焰对试样下层基体的烧蚀。观察5[#]试样烧蚀后表 面显微形貌,如图6所示,EDS结合XRD分析,表层 SiC氧化后生成的SiO₂以液膜形式附着于烧蚀表面 且不会被吹走,起到了保护下层基体的作用,使得烧 蚀程度大幅度下降。通过对比图5和图6的两张 SEM照片可以看到,在图6中,形成的SiO₂将下层基 体中的SiC粉末和晶须覆盖和包裹住,而在图5中, 由于发生了剥蚀和揭层,表层SiC氧化的产物SiO₂被 高温气流不断的冲刷带走,使下层的SiC粉末和晶须 暴露出来。正是由于SiC不断的暴露在燃气流下,使 得SiC被不断升华反应掉,无法充分起到抗烧蚀作 用,导致环氧树脂/SiC体系涂料试样的耐高温烧蚀 性能比呋喃树脂/SiC体系涂料差。

(a) SEM 照片

3 结论

(1)环氧树脂/SiC 与呋喃树脂/SiC 体系的修复 涂料,均在 SiC 粉末与晶须的质量分数比为 8/4 时, 具有较好的耐高温烧蚀性能,线烧蚀率与质量烧蚀率 分别为 130 μm/s、106 mg/s 和 28 μm/s、66 mg/s。

(2)呋喃树脂作为基体与 SiC 粉末/晶须的烧蚀 匹配性优于环氧树脂,烧蚀后试样未发生明显的剥 蚀、揭层等问题,具有较强的抗烧蚀剥蚀能力。烧蚀 过程中生成的 SiO₂能在烧蚀表面形成致密的连续 层,阻止氧-乙炔焰对试样下层基体的烧蚀,比环氧 树脂/SiC 体系涂料具有更强的耐高温烧蚀能力,可 用于高超声速飞行器 TPS 破损结构的修复。

参考文献

[1] Giegerich M J. Thermal protections system for all-weather reusable launch vehicles $[\,R\,]$. In:NASA Conference Publication,1993:23–26

[2] 黄志澄, 仇强华, 袁生学. 高超声速飞行展望[J]. 流体力学实验与测量, 1997, 11(1):6-11

[3] 韩鸿硕,等编译. 空天飞机的结构和材料[R]. 航空 航天部航天科技情报研究所,1993:99-103

[4] Robinson J H. Orbital debris impact damage to reusable launch vehicles [J]. International Journal of Impact Engineering, 1999,783-794

[5] Clark S D, Larin M, Rochelle B. NASA shuttle orbiter reinforced carbon-carbon (RCC) crack repair arc-jet testing[R]. In: ASME District E Student Professional Development Conference, 2007;4–11

[6] Singh M. In-space repair of reinforced carbon-carbon (RCC) thermal protection system stuctures $[C]//29^{th}$ International Conference on Ceramics and Composites, 2005:18–24

[7] GJB323A—1996. 烧蚀材料烧蚀试验方法[S]. 中华 人民共和国国家军用标准,1996:10

[8] 袁海根,曾金芳,杨杰,等.防热抗烧蚀复合材料研究 进展[J].化学推进剂与高分子材料,2006,4(1):21-25

[9] 张宗强, 匡松连, 尚龙, 等. 树脂基复合材料长时间烧 蚀防热的应用研究[J]. 宇航材料工艺, 2007, 37(6): 29-31

[10] 潘育松,徐永东,陈照峰,等.2D C/SiC 复合材料烧 蚀性能分析[J]. 兵器材料科学与工程,2006,29(1):17-20

(编辑 吴坚)