八氨基苯基笼形倍半硅氧烷改性的双马来酰亚胺树脂

黄福伟 周 燕 沈学宁 黄发荣 杜 磊

(华东理工大学国防材料工程研究所,上海 200237)

文 摘 从苯基三氯硅烷出发,通过水解缩合合成八苯基笼形倍半硅氧烷 (OPS),经发烟硝酸硝化得到八 硝基苯基笼形倍半硅氧烷 (ONPS),再经 Pd/C催化还原得到八氨基苯基笼形倍半硅氧烷 (OAPS),用红外光谱 (**R**)和核磁共振 (NMR)表征了它们的结构。以溶液聚合制备了 OAPS/BM 树脂,研究了 OAPS含量对 OAPS/ BM 固化树脂热性能的影响,并考察了 OAPS/BM 固化树脂的介电性能。研究结果显示:随着 OAPS含量的上 升,OAPS/BM 固化树脂的 T_{g} 变化不大,5%失重温度 (T_{d}^{5})下降。含 5%质量分数 OAPS的 OAPS/BM I固化树 脂的 T_{g} 达到 429 ; T_{d}^{5} 达到 475 ,800 残重率为 51.9%;在 7.95 MHz下其介电常数为 2.92, tan 为 9.69 × 10^{-3} 。

关键词 八氨基苯基笼形倍半硅氧烷,改性双马来酰亚胺树脂,耐热树脂,热性能,介电性能

Bismaleimide Resins Modified by Octa (Aminophenyl) Silsesquioxane

Huang Fuwei Zhou Yan Shen Xuening Huang Farong Du Lei

(Institute of Advanced Materials, East China University of Science and Technology, Shanghai 200237)

Abstract Octa (aminophenyl) silsesquioxane (OAPS) was prepared by nitration of octaphenylsilsesquioxane (OPS) in fuming nitric acid to form octa (nitrophenyl) silsesquioxane (ONPS) and by mild reduction of ONPS with Pd/C as a catalyst OPS, ONPS and OAPS were characterized by FT - \mathbb{R} , ¹H NMR, and ²⁹Si NMR. The OAPS/BM I resin was prepared by solution polymerization of OAPS and BM I The curing behavior of OAPS/BM I resin was investigated by DSC and the thermal and dielectric properties of cured OAPS/BM I resin were studied The DMA and TGA results indicated that the glass transition temperature (T_g) of cured OAPS/DPBPA/BM I resin changed unremarkably with the increas of OAPS content, while thermal decomposition temperature (T_d^5) decreased The T_g of cured resin with 5% OAPS is 429 , T_d^5 is 475 , and char yield 51. 9% (800), dielectric constant 2 92 and tan 9. 69 ×10⁻³.

Key words Octa (Aminophenyl) silsesquioxane, Modified Bismaleinide resin, Heat-Resistant resin, Thermal properties, Dielectric properties

1 前言

航天航空透波材料应具有优异的介电性能、良好 的耐热性能、耐环境性以及机械性能^[1~2]。笼形倍半 硅氧烷 (POSS)是近年来发展迅速的一类纳米级的聚 合物增强材料,由于 POSS中含有无机 Si—O骨架和 特殊的笼状结构,所以能提高聚合物的耐热性能和介 电性能^[3~6]。Choi等人^[7]利用八氨基苯基笼形倍半 硅氧烷 (OAPS)和二苯醚四甲酸二酐 (ODPA)制备的 OAPS/ODPA纳米复合材料的 5%失重温度 (T_d^5) 在 570 以上。Huang等人^[8]采用溶胶凝胶法制备的

收稿日期:2007 - 10 - 16;修回日期:2007 - 12 - 07 基金项目:国家安全重大基础研究计划资助(5131802) 作者简介:黄福伟,1982年出生,博士研究生,主要从事耐高温材料的研究

宇航材料工艺 2008年 第 2期

— 17 —

OAPS/PI纳米复合材料与纯的 PI相比, T_g从
301.4 提高到 421.0 。Leu等^[9]将 2 5%的 NH₂
POSS引入到 PMDA /ODA 中,其介电常数从 3.40
降到 3.09。可见 POSS是一种有潜力的透波材料。

双马来酰亚胺 (BM I)树脂既有优良的耐 (湿) 热、耐辐射等多种性能,又有易加工性能和优良的介 电性能,因此在航天航空领域得到了广泛应用。将 POSS与 BM I树脂相结合,可形成一种具有优良耐热 性能和介电性能的材料。本文采用 OAPS来改性 BM I树脂,制备了有机/无机杂化树脂,并表征了树脂 的耐热性能和介电性能。

2 实验

2.1 主要原料

苯基三氯硅烷,辽宁大连市元永有机硅厂。苄基 三甲基氢氧化铵的甲醇溶液[50%(质量分数)],江 苏金坛市西南化工研究所。发烟硝酸,上海试剂四 厂。二苯甲烷型双马来酰亚胺,湖北洪湖双马来酰亚 胺厂。Pd/C催化剂[5%(质量分数)]及其他试剂均 购自上海国药集团化学试剂有限公司。

苯基三氯硅烷通过减压蒸馏提纯,氯仿用 4A分 子筛除水,四氢呋喃和三乙胺用 4A分子筛除水后再 加入钠和二苯甲酮 (指示剂)蒸馏提纯。

2.2 仪器设备

红外光谱分析采用 Nicolet 550型傅里叶红外光 谱仪, KBr 压片。核磁共振分析采用 BRUKER AVANCE 500 MHz核磁共振波谱仪,以 CDCLh和 DM-SO - d₆为溶剂。热分析采用 Netzsch 200 DSC分析 仪,升温速率 10 /min,N₂气氛。动态力学分析采用 Netzsch 242 DMA分析仪,频率 1 Hz,升温速率 3 / min。热失重分析采用 METILER TGA/SDTA 851 TGA分析仪,升温速率 10 /min,N₂气氛。介电性能 测试采用 Q表 AS28571测试,测试温度 20 ,频率 7.95 MHz。

2.3 八苯基笼形倍半硅氧烷(OPS)的合成

将苯基三氯硅烷 (50 g,0 24 mol)和苯 (240 mL) 加入 1 L 装有冷凝管、温度计和搅拌棒的三口烧瓶 中,机械搅拌,冷凝管通冷凝水,室温下缓慢滴加去离 子水 (125 g),滴加完毕后室温反应 24 h。然后将混 合物转移到 1 L 分液漏斗中,用去离子水洗去 HCl, 至 pH 7。再将苯层转移到 500 mL 三口烧瓶中,加 入催化剂苄基三甲基氢氧化铵的甲醇溶液 (10 mL), 混合物加热回流反应 4 h。然后停止加热与搅拌,静 置 4 d。再加热回流反应 24 h。冷却至室温,抽滤后 得到白色粉末产物,用去离子水洗去掉残余的催化 剂,再经真空烘箱干燥即可^[10~11]。产率:90%。FT-R:3 074 cm⁻¹ (C—H),1 595 cm⁻¹ (phenyl),1 115 cm⁻¹ (Si—O—Si)。²⁹ Si NMR: - 77.7。

2.4 八硝基苯基笼形倍半硅氧烷 (ONPS)的合成

将 OPS(40 g)和氯仿 (240 mL)加入 1 L装有冷 凝管、温度计和搅拌棒的四口烧瓶中,机械搅拌,冷凝 管通冷凝水,用冰盐浴冷却烧瓶。然后缓慢滴加发烟 硝酸 (240 mL),滴加完毕后在冰盐浴冷却下再反应 1 h,然后室温反应过夜。将混合物倒入 400 g冰中,等 冰熔化后将混合物转移到 1 L分液漏斗中,用去离子 水洗去 HNO₃,至 pH 7。有机层蒸馏除掉氯仿后得 到淡黄色粉末产物。产率:90%。FTIR:1 350 cm⁻¹ (N=O),1 530 cm⁻¹ (N=O),1 098 cm⁻¹ (Si=O-Si)。¹H NMR:8 6(1.0 H),7.8 - 8.4 (4.2 H),7.7 (2.8 H)。²⁹ Si NMR: - 79.5 (1.0 Si), - 82.6 (1.1 Si)。 **2.5 OAPS的合成**

将 ONPS(30 g)和 Pd/C催化剂 (3.68 g)加入 1 L装有冷凝管、温度计和搅拌棒的四口烧瓶、烧瓶除 水除氧, N₂保护, 加入 240 mL 无水四氢呋喃和 240 mL无水三乙胺,机械搅拌,通冷凝水。加热至 60 , 缓慢滴加甲酸 (31.2 mL), 滴加完毕后继续反应 5 h。 待冷却后将 150 mL水和 150 mL四氢呋喃加入反应 体系,搅拌至稠状体系变成黑色悬浮液。抽滤分离出 Pd/C,滤液加 150 mL乙酸乙脂,用 300 mL去离子水 洗 4次,有机层加 15 g M gSO₄干燥, N₂保护过夜。抽 滤除去 MgSO4,用 2 L石油醚沉淀,抽滤分离得到沉 淀物,再溶于 90 mL 四氢呋喃 (THF)和 150 mL 乙酸 乙酯中,再用1L石油醚沉淀,抽滤分离得到产物,经 真空烘箱干燥即可。OAPS的合成示意如图 1所示。 产率:73%。FTR:3 380 cm⁻¹ (N—H),1 621 cm⁻¹ (N-H), 1 128 cm⁻¹ (Si-O-Si), H NMR: 6 0 ~ $7.8(2.3 \text{ H}), 4.0 \sim 5.4(1.0 \text{ H})_{\circ}$

2.6 OAPS/BM I树脂的合成

将计量配比的 OAPS和 BM 加入三口烧瓶,加入 溶剂无水二氧六环,机械搅拌,通冷凝水,N₂保护, 100 反应 1 h。待冷却后,用石油醚沉淀,抽滤分离 得到产物,经真空烘箱干燥即得 OAPS/BM I树脂。 合成并研究了 1[#]~4[#]试样,OAPS的质量分数分别为 5%、10%、15% 和 20%, 0[#]试样为纯 BM I树脂。 OAPS/BM 树脂的合成示意如图 2所示。

图 2 OAPS/BM 树脂的合成 Fig 2 Synthesis of OAPS/BM I resin

3 结果与讨论

3.1 树脂的固化

图 3是 1[#]试样的 DSC曲线,从图上可以看出在

宇航材料工艺 2008年 第 2期

159 有一个熔融吸热峰,吸热量为 90 J/g,为树脂的熔化峰,与 BM 熔点接近;在 219 有一个宽放热峰,为 OAPS/BM 树脂的固化放热峰,放热量为 155 J/g.

— 19 —

固化放热峰的起始温度为 184 ,峰温为 219 ,终止 温度为 255 ,因此初步确定 OAPS/BM I树脂的固化 工艺为 170 /2h + 200 /2h + 230 /2h + 260 / 5h。

3.2 固化树脂的表征

固化树脂的红外光谱如图 4所示。研究结果显示 OAPS的伯氨基在 3 380 cm⁻¹的伸缩振动吸收峰和 1 622 cm⁻¹的弯曲振动吸收峰都已经减弱,取而代之的是在 3 471 cm⁻¹处出现仲氨基伸缩振动吸收峰。由于 BM I的 C ── C 双键打开, BM I亚胺环上的 C ── N ── C 在 1 149 cm⁻¹的吸收峰在 OAPS/BM 树脂中变为 1 181 cm⁻¹的吸收峰,此外, BM I在 830 cm⁻¹的 C ── C 吸收峰和 690 cm⁻¹的 ─ C ── H 吸收峰明显减弱但未完全消失 (苯环的骨架振动也存在吸收)。以上结果表明 OAPS和 BM IE 发生 Michael加成反应。

and resin components

3.3 固化树脂的性能

331 固化树脂的热性能

不同配比的 OAPS/BM I固化树脂的 DMA 曲线 如图 5 所示。分析结果列于表 1。可见 T_g 随着 OAPS含量的变化而变化,但变化不大。3^{*}和 4^{*}树脂 的 T_g已接近热失重温度,所以在图 5上没有明显的 损耗因子峰出现。总的来说,OAPS/BM I固化树脂的

T_a要高于一般改性 BM 树脂。

TGA (图 6)研究结果显示随着 OAPS含量的上 升, T_{d}^{5} 呈下降趋势,残重率 Y_{c} 呈上升趋势。这是因 为 OAPS的 NH₂和 BM I亚胺环上的 C= C反应后生 成 C—N,而 C—N的耐热温度有限,因此随着 OAPS 含量的上升导致 T_{d}^{5} 降低。OAPS含量的上升使树脂 体系内 Si含量上升,在高温下分解会形成 SD₂等,因 而残重率升高。

图 6 不同配比的 OAPS/BM I固化树脂的 TGA曲线 Fig 6 TGA curves of cured OAPS/BM I resins with different content of OAPS

表 1 OAPS/BM 固化树脂的 TGA和 DMA分析结果

Tab. 1 TGA and DMA analysis result of

cured OAPS/BM I resins

试样	$T_{ m g}$ /	T_d^{5} /	$Y_{\rm c}$ /%
0#	-	501	48.8
1#	429	475	51. 9
2#	418	463	53. 4
3#	-	450	54. 3
4#	-	444	56.4

3.3.2 固化树脂的介电性能

(下转第 33页)

宇航材料工艺 2008年 第 2期

2

5855828, 1999

6 Tuffias R H, Williams B E, Kaplan R B. USA Patent: 5855828, 1999

7 Gelfond N V, Tuzikov F V, Igumenov I K An XPS study of the composition of iridium films obtained by MOCVD. Surface Science, 1992; 275: $323 \sim 331$

8 Goto T, Vargas J R, Hirai T Preparation of iridium clusters by MOCVD and their electrochem ical properties Mateials Science and Engineering A, 1996; 217/218: $223 \sim 226$

9 Sm ith D C, Pattillo S G, Zocco T G et al Low-temperature chemical vapor deposition of rhodium and iridium thin films Mat Res Soc Symp. Proc., 1990; 168: 369 ~ 377

10 Maury F, Senocq F. Iridium coatings grown by metal-organic chemical vapor deposition in a hot-wall CVD reactor Surface and Coatings Technology, 2003; 163 ~ 164: 208 ~ 213

11 Sun YM, Endle J P, Smith K et al Iridium film growth with iridium tris-acetylacetomate: oxygen and substrate effects Thin Solid Films, 1999; 346: $100 \sim 107$

12 Mum taz K, Echigoya J Hiral T et al R magnetion sputtered iridium coatings on carbon structural materials Materials Science and Engineering A, 1993; 167: 187 ~ 195

13 Mum taz K, Echigoya J, Hirai T et al Iridium coatings on carbon-carbon composites produced by two different sputtering methods: a comparative study Journal of Materials Science Letters, 1993; 12: 1 411 ~ 1 417

14 Harding J T, Fry V R, Tuffias R H et al Oxidation resistance of CVD coatings A ir Force Rocket Propulsion Laboratory (AFRPL), Edwards A ir Force Base, CA, 1987: 29

15 徐重. 等离子表面冶金技术的现状与发展. 中国工程 科学, 2002; 4(2): 36~41

16 徐重,张高会,张平则等.双辉等离子表面冶金技术的新进展.中国工程科学,2005;7(6):73~78

17 Bauer E, Epitaxy of metals on metals Applied Surface Science, 1982; 11 ~ 12: 479 ~ 494

(编辑 李洪泉)

(上接第 20页)

测试了 1[#]固化树脂的介电性能,在 7.95 MHz下 为 2.92, tan 为 9.69 ×10⁻³。

4 结论

用 OAPS和 BM I制得了 POSS改性的双马来酰 亚胺树脂 (OAPS/BM I), OAPS/BM I固化树脂具有较 好的热性能和介电性能。随着 OAPS/BM I树脂中 OAPS含量的提高,其固化树脂的 T_{g} 变化不大, 5%失 重温度 T_{d}^{5} 呈下降趋势, 800 残重率 Y_{c} 呈上升趋势。 含 5%质量分数 OAPS的 OAPS/BM I固化树脂的 T_{g} 达到 429 ; T_{d}^{5} 达到 475 , Y_{c} 为 51.9%;在 7.95 MHz下的 为 2.92, tan 为 9.69 ×10⁻³。

参考文献

1 黎义,李建保等.航天透波多功能复合材料的介电性 能分析.宇航材料工艺,2001;31(6):4~9

2 袁海根,周玉玺.透波复合材料研究进展.化学推进剂 与高分子材料,2006;4(5):30~36

3 Baney R H, Itoh M et al Silsesquioxanes Chem Rev, 1995; 95: 1 409 ~ 1 430

4 Harrison P G Silicate cages: precursors to new materials Journal of Organometallic Chemistry, 1997; 542: 141 ~ 183

5 Strachota A, Tishchenko G et al Chitosan-oligo (sils-

esquioxane) blend membranes: preparation, morphology, and diffusion permeability. Journal of Inorganic and Organometallic Polymers, 2002; 11: 165 ~ 182

6 刘玉荣,黄玉东等. POSS改性传统聚合物的研究进 展.宇航材料工艺,2005;35(2):6~9

7 Choi J, Tamaki R et al Organic/inorganic inide nanocomposites from aminophenylsilsesquioxanes Chem Mater, 2003; 15: 3 365 ~ 3 375

8 Huang J C, He C B et al Polyinide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties Polymer, 2003; 44: 4 491 ~ 4 499

9 Leu CM, Reddy GM et al Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites Chem Mater, 2003; 15: 2 261 ~ 2 265

10 Tamaki R, Tanaka Y et al Octa (am inophenyl) silsesquioxane as a nanoconstuction site J. Am. Chem. Soc , 2001; 123: 2 416 ~ 2 417

11 Huang FW, Rong ZX et al Organic/Inorganic hybrid bismaleimide resin with octa (aminophenyl) silsesquioxane Polym Eng Sci, in press

(编辑 任涛)