铌钨合金材料在液体火箭发动机上的应用

张春基 吕宏军 贾中华 陈道勇 胡国林

(航天材料及工艺研究所,北京 100076)

文 摘 为探索铌钨合金在液体火箭发动机上的应用,针对我国研制成功的 Nb - 5W - 2Mo - 1Zr铌钨合 金进行了高温性能试验及抗高温氧化涂层的研制,铌钨合金及涂层在高温时的组织结构分析及相关工艺试验。 结果表明:Nb-5W-2Mo-1Zr铌钨合金及抗氧化涂层可用于液体火箭发动机。

关键词 铌钨合金,抗氧化涂层,液体火箭发动机,应用

Application of Nb - W Albys in Liquid Rocket Engine

Zhang Chunji L üHongjun Jia Zhonghua Chen Daoyong Hu Guolin (Aerospace Research Institute of Materials & Processing Technology, Beijing 100076)

Abstract In order to research application of Nb - W alloys in liquid rocket engine high-temperature properties and oxidation-resistant coating are researched about Nb - 5W - 2Mo - 1Zr alloys, and at the high temperature, the microstructure and composition are analyzed, interrelated technology process test is completed. Results show that Nb - 5W - 2Mo - 1Zr alloys and oxidation-resistant coating can be used in liquid tocket engine

Key words Nb - W alloys, Oxidation-resistant coating, Liquid rocket engine, Application

1 前言

铌铪合金 (NbHfl0-1)是我国目前双组元液体 火箭发动广泛使用的材料,该材料在硅化铌高温抗氧 化涂层保护下工作温度为 1 200~1 300 ,远低于推 进剂燃烧时产生的燃气温度(2700),因此必须设 置由推进剂形成的液膜冷却来降低燃烧室壁的温度. 这部分冷却的推进剂流量约占燃料的 30% ~40%, 造成推进剂浪费,缩短航天器的在轨寿命且易产生羽 流污染等。根据初步推算,对初始质量为 2 200 kg的 卫星,比冲每增加1 s,发动机工作 6 000 s将节约3 kg左右的推进剂。因此任何有助于减少推进剂消耗 的措施必将带来巨大的经济效益。

铌钨合金 (Nb - 5W - 2Mo - 1Zr)在硅化钼高温 抗氧化涂层的保护下工作温度为 1 550 左右,可大 幅度减少了用于冷却燃烧室的推进剂流量,有利用提 高发动机的比冲。因此本文对铌钨合金高温组织及 性能、高温抗氧化涂层组织及性能进行了研究,并通 过发动机推力室试制对该合金的工艺性能进行了研 究。

- 2 实验
- 2.1 材料

实验材料铌钨合金 Nb - 5W - 2Mo - 1Zr,为再结 晶状态。其化学成分见表 1。

Tab. 1 Composition of Nb - 5W - 2M o - 1Zr alloy

表 1 Nb - 5W - 2Mo - 1Zr 铌钨合金化学成分

_												
	W	Mo	Zr	С	Ν	0	Cu	Ti	Fe	Si	Та	Nb
	5. 14	1.87	1. 33	0. 0095	0. 0060	0. 010	0. 001	0. 016	0. 001	0. 0028	0. 59	余量
2	2 方法						抗氧化	と涂层后 :	分别在 1	600、17	00及1800) 长时间
	铌钨合金材料加工成高温拉伸试样 ,在高温拉伸				保温,	然后通过	扫描电镜	竟、X射线	衍射、透射	电镜等方		

试验机上通过通电加热的方式将试样加热到试验温 度,保温 5 min后进行试验;铌钨合金试样喷涂高温

法对碳化物强化相进行分析。用再结晶态铌钨合金 板材进行变壁厚喷管延伸段旋压成形试验及铌钨合

收稿日期:2007-09-30

作者简介:张春基,1971年出生,高级工程师,主要从事金属材料及成形工艺方面的研究工作

宇航材料工艺 2007年 第6期

%(质量分数)

金之间的电子束焊接、铌钨合金与 7715D高温钛合 金电子束焊接等工艺试验。

制备好高温抗氧化涂层的试样在大气环境下通 过低电压大电流直接通电加热方式,用红外测温仪测 量加热温度,并记录加热保温时间。

抗氧化性能试验:在静态空气中试片 30 s升温 到试验温度,进行保温,观察记录涂层出现缺陷的时 间。

抗热震性能试验:试片在静态空气中 12 s升温到试 验温度,保温 3 s,降温 30 s,温度在试验温度和室温之间 交变循环,观察记录涂层出现缺陷时循环的次数。

用铌钨合金制成某型号液体火箭发动机 1 1样 件,进行高空试车试验。

3 结果与分析

3.1 铌钨合金高温组织与性能

微细而稳定的碳化物、氮化物和氧化物弥散相对 铌合金是一种最有效的高温强化法^[1],铌钨合金中 碳化物强化相为弥散分布的 (Nb, Zr) C和 Nb₂ C^[2]。 通过 X射线衍射和透射电镜分析,证实了铌钨合金 中的碳化物的结构。图 1为铌钨合金在高温长时间 加热后扫描电镜照片。

(a) 1 600 /11 h

(b) 1 700 /11 h

(c) 1 800 /17 h 图 1 铌钨合金微观形貌(SEM) Fig 1 Microstructure of Nb - W albys

图 2为铌钨合金在 1 600、1 700及 1 800 时的 力学性能。可以看出,当铌钨合金在 1 600 长时间 加热情况下,析出的碳化物相形态几乎成为球状,基 本上沿晶界分布;保温时间相同,随着保温温度的提 高,碳化物在亚晶界及基体上析出并长大,碳化物的 形态也不再是球形,而是有一定的晶体学取向[图 1 (c)]。碳化物作为铌钨合金的高温强化相,只有在 其弥散分布的时候才能起到好的高温强化作用,它的 聚集和长大必将导致铌钨合金高温强度的下降。图 2中的高温力学性能曲线也说明了强度下降与温度 的关系。

图 2 铌钨合金高温力学性能

Fig 2 Properties of Nb - W alloys at high temperature

铌钨合金中存在 MC, M₂ C及 M₃ C₂等多种类型碳 化物^[1]。图 3为铌钨合金 X射线衍射图,碳化物标 定结果为 Z₁C,图 4为碳化物透射电镜衍射斑点,花 样标定结果为 Nb₂C。Z₁C为弥散分布的稳定碳化物 相,而 Nb₂C为亚稳碳化物相。

图 3 铌钨合金 X射线衍射图 Fig 3 XRD patterns of Nb - W alloys

图 4 透射电镜衍射斑点 Fig 4 TEM patterns of Nb - W alloys

宇航材料工艺 2007年 第 6期

- 58 —

3.2 铌钨合金喷管延伸段旋压及电子束焊接

3.2.1 喷管延伸段旋压

图 5所示工件为用铌钨合金板材经过旋压成形 的喷管延伸段,该工件高为 400 mm,喷口直径为 282 mm,壁厚由 1.5 mm向喷口处 0.5 mm均匀过 渡。通过旋压试验,说明新研制的铌钨合金室温成形

性能良好,该材料的极限变薄率应在 70%左右。

图 5 喷管延伸段旋压件 Fig 5 Spinning workpiece

3.2.2 电子束焊接

图 6为铌钨合金与铌钨合金之间的电子束焊接。 焊缝成形性好,热影响区较小,板材焊接并退火后进 行焊缝 X光检测及拉伸试验,拉伸试样在基材处断 裂,X光检测判定焊缝内部质量符合 QJ972—86 I级 焊缝的要求。

图 6 铌钨合金同种材料电子束焊缝 Fig 6 Nb - W albys welding

图 7为铌钨合金与 7715D高温钛合金电子束焊 接焊缝剖切照片。

图 7 铌钨合金与 7715D高温钛合金电子束焊缝 Fig 7 Nb - W and 7715D alloys welding

宇航材料工艺 2007年 第 6期

由于铌钨合金与钛合金熔点相差较大,焊缝区与 铌钨合金的界限比较平滑,热影响区也小。通过电子 扫描电镜对焊接试样的焊缝区进行了成分分析,结果 如表 2所示。从表中可知,除了微量元素 Sn、W外, 主要元素 Al, Ti, Nb在焊缝区存在均匀过渡,靠近铌 钨合金侧主元素 Nb比较多,靠近 Ti合金侧 Ti元素 比较多,Al, Sn元素为钛合金中的化学组成成分。

表 2 焊缝区成分

Tab 2 Composition of weld zone

%(原子分数)

测量位置	Al	Ti	Nb	Sn
Ti侧	8. 92	74. 35	15. 59	1.14
中心	7.95	71. 02	19.96	1. 07
Nb侧	7.97	72. 11	18.8	1. 12

3.3 硅化钼高温抗氧化涂层

在铌钨合金上制备的硅化钼涂层,高温下形成氧 化钼是挥发性氧化物,可形成比较纯的玻璃质 SD, 层,起氧的阻挡层的作用,氧化膜生长速度低,能够流 动并能承受一定的机械变形,有一定自愈合能力使涂 层中形成的机械缺陷得以愈合,因而具有良好的抗氧 化性能:MoSi与铌钨合金有相近的线胀系数,与 Nb-Si形成固溶体,因而与铌合金有良好的结合性能。 R. Tiwari和 H. Herman研究了等离子喷涂 MoSi系的 涂层,指出 MoSi涂层的高温抗氧化效果很好,但缺 乏韧性^[3]。Andrew等在铌基体上先溅射沉积成分 Mo-W的表层,再添加 Si和 Ge进行固相渗透,制得 (Mo,W) (Si, Ge)₂涂层^[4]。Brian 等则在铌基体上先 用 PVD 沉积 Mo,再与添加了 Ge的 Si扩散形成改性 的 MoSi涂层^[5~6]。这些方法制备的 MoSi涂层表现 出良好的抗氧化性能,但在应用中还有一些不足之 处。殷磊等人利用料浆熔烧法在铌基体表面制备了 $MoSi高温抗氧化涂层 .抗氧化寿命达到了 2 h^{[7]}$ 。

在铌钨合金上制备的硅化钼涂层性能如表 3所 示。

表 3 硅化钼涂层抗氧化性能和热震性能

Tab 3 Exposure and shock properties of MoSi coatings

抗氧化性能		热震性能				
1700 /30~50 h	1700	保温 3 s,30 s降至室温循环寿命	500次			
1800 / 10~20 h	1600	保温 3 s,30 s降至室温循环寿命	1000次			

3.4 铌钨合金液体火箭发动机试制

用铌钨合金研制了某型号 1 1液体火箭发动机 推力室试验件,并进行了热试车试验。图 8为该推力 室试车前后的照片。试车结果表明,用铌钨合金材料 及硅化钼涂层研制的火箭发动机推力室比冲比原来 同型号发动机提高 10 s。进行地面发动机热试车,最

— 59 —

高工作温度 1 561 ,说明涂层具有一定的抗高温高 速燃气流冲刷的能力。

图 8 喷管试车前后实物图 Fig 8 Pro-Testing and after-testing pictures of nozzle

4 结论

(1)Nb - 5W - 2Mo - 1Zr铌钨合金具有良好的 高温力学性能,在 1 600 时有较高的强度。

(2)通过火箭发动机推力室的研制,表明该铌钨 合金材料具有良好的工艺性能:可进行薄壁件曲母线 型发动机喷管的旋压;同种材料之间及其与 7715D 高温钛合金之间可进行电子束焊接。 (3)MoSi_i涂层具有优异的静态高温抗氧化、抗 热震性能。解决了发动机推力室身部复杂形面内表 面硅化钼涂层制备问题。

(4)制备硅化钼涂层的短喷管进行地面发动机 热试车,最高工作温度 1 561 ,说明涂层具有一定的 抗高温高速燃气流冲刷的能力。

参考文献

1 铌基合金碳化物弥散相的控制.新金属材料,1972; (4):44~50

2 铌基合金的弥散强化机理.新金属材料,1971;(1):68 ~73

3 Tiwari R, Herman H. Materials Science and Engineering, 1992; (A155):95 ~ 100

4 Andrew Mueller, Ge Wang, Rapp A. Materials and Engineering, 1992; (A155): 199 ~ 207

5 Cockeram B V. Surface and Coatings Technology, 1995; $(76 \sim 77): 20 \sim 27$

6 Cockeram f V, Robert Rapp A. Materials Scienceand Engineering, 1995; (A192/193): 980 ~ 986

7 殷磊. 铌表面 MoSi₂ 高温涂层的形貌和结构研究,稀 有金属材料与工程, 2005; 34: 91~94

(编辑 任涛)

(范本)

《宇航材料工艺》编辑部 论文著作权转让书

论文中文文题:

论文英文文题:

作者 (代表)联系电话:

电子邮箱:

全体作者姓名:

遵照《中华人民共和国著作权法》,上述论文全体作者同意将该论文之著作权中的财产权(含各种介质、媒体,以各种语言、 各种形式出版的使用权),在全世界范围内转让给《宇航材料工艺》编辑部。本转让书自作者签字之日起生效。

若从《宇航材料工艺》编辑部收到本转让书之日起,作者在 90日之内没有收到上述论文的修改意见或录用通知,则本转让书 自动失效。

在签署本转让书时作者作如下保证并对其负全部责任:

(1)上述论文是作者独立创作的原创性作品,未曾在国内外书刊上公开发表过;

(2)该论文符合国家有关保密的规定(航天系统作者须同时附本单位的保密审查证明);

(3)该论文不侵犯任何第三方的著作权及其他合法权利。

同时承诺:

(1)《宇航材料工艺》没有向作者做出修改、录用或退稿通知之前(在前述限定的时间内),不将上述论文投往其他刊物;

(2)签字作者保证其本人具有签署本转让书并做出各项承诺之全权;

(3)有证据能证明未签字之作者授权签字作者代表其签署本转让书;本转让书对全体作者均有约束力。

作者 (代表)签字:

年	年月日			(地点)	
宇	■航材料	料工艺	2007年	第 6期	