柱状金属微粒 - 电介质复合材料的等效介电常数

唐妍梅 杨河林

(华中师范大学物理科学与技术学院,武汉 430079)

文 摘 基于介质圆柱电磁散射理论和等效介质理论,导出了金属柱微粒 - 电介质复合材料的等效相 对介电常数的表达式。数值结果表明:入射波频率低于某一频率或金属柱掺料的体积分数增大到一定数值 时,复合材料的等效相对介电常数实部会变为负数。

关键词 柱状金属微粒 - 电介质复合材料 ,等效相对介电常数 ,等效介质理论

Effective Dielectric Constant of Metal Wire-Dielectric Composites

Tang Yanmei Yang Helin

(College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079)

Abstract Based on the electromagnetic scattering theory of dielectric wire and effective medium theory, the formula of the effective dielectric constant of metal wire-dielectric composites is derived Numerical results reveal that effective dielectric constant becomes negative when incident wave frequency is below some frequency or the metal concentration is more than some value.

Key words Metal wire-dielectric composite, Effective dielectric constant, Effective medium theory

1 引言

计算复合材料的等效电磁参数一直是光、电、磁 等领域重要且难以解决的问题之一。在近几年的研 究中,人们对由球形、椭球形颗粒、层状金属材料颗 粒掺杂而成的复合材料的电磁性质产生了浓厚的兴 趣^[1~6],比如电磁晶体、微波吸收材料等,在对由不 同形状颗粒以不同结构体系掺杂而成的复合材料的 电磁特性研究中,发现该种材料的磁导率在谐振频 率下会发生突变,在一些频段内,复合介质会呈现很 强的磁性,出现介电常数和磁导率同为负值的情 况^[1],从理论上预言了一种负折射率材料。由于吸 波材料在军事上的应用仍占主导地位,目前对吸波 材料实验和理论研究的报道都比较保守,尤其是计 算的报道多限于理想体系。研究复合吸波材料的电磁性能主要从微粒本征复介电常数 和复磁导率 μ 出发计算出等效电磁参数 ($_{r,eff}$ 和 $\mu_{r,eff}$),从而预测 其电磁性能。 $_{r,eff}$ 和 $\mu_{r,eff}$ 直接反映了吸波材料性能 的优劣,因此,复合介质介电特性对吸波材料的电磁 性能研究有重要意义。对理想复合材料等效电磁参 数的 理论研究,经典的 Maxwell Gamett 公式、 Bruggeman公式、QCA ACP等可以初步预测复合材 料的等效电磁参数^[1],然而不同材料或者不同结构 的复合材料其电磁性能的预测在同一经典公式的基 础上往往要做不同的修正。

本文基于等效介质理论 (EMT)^[7],从电磁散射 的角度出发,分析柱状金属微粒 - 电介质复合材料

作者简介:唐妍梅,1982年出生,硕士研究生,主要从事电磁场理论等方面的研究工作

宇航材料工艺 2006年 第 4期

- 7

收稿日期: 2005 - 06 - 22;修回日期: 2005 - 09 - 19

的等效介电常数的变化特性。

2 基本理论

等效介质理论是一种平均场理论,其基本思想 是:由基体和掺杂材料的电磁参数及相应的体积分 数算出复合材料的等效参数,而所谓的等效相对介 电常数是指复合材料的介电常数与真空介电常数 。的比值,是一个相对值,用数学式表示为:等效相

对介电常数 =等效介电常数 / 。。

图 1 复合材料的结构 Fig 1 Structure of composite material

本文研究由长径比非常大 (无限长)的非磁性 金属圆柱整齐排列成层状结构,即柱状金属微粒 -电介质复合材料的等效介电常数特性。如图 1所示, 圆柱的轴向与 z轴平行, a为圆柱的半径, L为层间距 离,且 a = L。设沿 x轴传播的电极化平面波为 $E^{i} = E_0 e^{-k_a x} z$,电场沿 z轴偏振, k_a 为基体介质中的波数, 则可将入射场用柱面波函数表示为 ⁽⁸⁾:

$$E_{m} = \frac{E_{0}}{k_{d n=0}} (2 - _{0n}) (- j)^{n} N_{enk_{d}}$$
(1)

考虑到边界条件以及场满足辐射条件,可求得圆柱体掺料内的场 E_m 及圆柱外基体介质的散射场 E_a 分别为:

$$E_{\rm m} = \frac{E_0}{k_{\rm m \ n=0}} b_{1n} N_{enk_{\rm m}}^{(2)}$$
(2)

$$\mathbf{E}_{d} = \frac{E_{0}}{k_{d n=0}} b_{2n} \mathbf{N}_{enk_{d}}^{(2)}$$
(3)

式中, $_{0n}$ 为 Kronecker函数, (当 n等于 0时为 1,当 n不等于 0时为 0)。 k_m 为圆柱掺料内波数, $_m$ 、 μ_m 分 别为掺料的相对介电常数和相对磁导率; $_d$ 、 μ_d 分别 为基体介质的相对介电常数和相对磁导率。 $N_{enk_m}^{(2)}$ 、 $N_{enk_d}^{(2)}$ 为柱面矢量波函数,系数 b_{1n} 、 b_{2n} 见文献 [8]。

当半径 a很小时,假设基体电介质为低介电常

数和磁导率材料如空气等, k_d a 0; 而对于高介电 常数和磁导率或金属材料, 圆柱半径 a 虽小, k_m a 却 不是一个小量。对 (2) 式、(3) 式作小宗量近似, 并 考虑到圆柱外基体介质的电场为入射场及散射场的 迭加, 可得圆柱内外总电场如下:

$$E_{\rm m} = E_0 \frac{J_1 (k_{\rm m} r)}{J_0 (k_{\rm m} r)} z \qquad r < a \qquad (4)$$

$$E_{d} = E_{0} [J_{0} (k_{d} r) + b_{20} H_{0}^{(2)} (k_{d} r)]z \quad r > a (5)$$

$$b_{20} = \left(\frac{k_{d} a}{2} - \sqrt{\frac{m}{M_{m}}} \cdot \frac{J_{1} (k_{m} a)}{J_{0} (k_{m} a)}\right) \frac{j k_{d} a}{2} \quad (6)$$

式中, J₀、J₁分别为零阶和一阶柱贝塞耳函数, H₀⁽²⁾ 为零阶第二类汉克尔函数。可证明 (4) 式、(5) 式满 足圆柱面电磁场的边界条件。利用 (4) 式、(5) 式在 一个正方形区域内积分, 可求出在一个正方区域内 复合材料中金属掺料内及基体介质中的电场 E_m 及 E_d。再由等效介质理论, 复合材料的等效介电常数 可表示为:

$$_{x eff} = \frac{\mid \mathbf{D} \mid}{\mid \mathbf{E} \mid} \tag{7}$$

式中, D = $_{m}E_{m} + _{a}E_{a}$ 为总平均电位移矢量, E = $E_{m} + E_{a}$ 为总平均电场。这样, 由 (7)式可得复合材料的等效电相对介电常数为:

$$r_{, eff} = \frac{2f(m - d)}{2f + (1 - f + b_0 q) k_m a \frac{J_0(k_m a)}{J_1(k_m a)}} (8)$$

$$q = -\ln \frac{L}{a} + (1 - f) \left[\frac{-3}{2} + \ln \frac{k_d a}{2} \right]$$

式中, $f = \frac{a}{L^2}$ 为金属柱掺料的体积分数, $b_0 = -\left(\frac{k_d a}{2} - \int_{\mathbf{H}}^{\mathbf{m}} \cdot \frac{J_0(k_m a)}{L(k_m a)}\right) k_d a_0$

对于以高介电常数和磁导率的金属圆柱微粒作 为掺料的复合材料,(8)式可简化为;

$$r_{r, eff} = d + \frac{2f_{m}}{k_{m} a \frac{J_{0} (k_{m} a)}{J_{1} (k_{m} a)} - m (ka)^{2} \ln \left(\frac{L}{a}\right)}$$
(9)

3 结果与讨论

3.1 等效介电常数随入射波频率的变化特性

以下对无限长排列成层状结构的金属圆柱作为 掺杂材料,空气作为基体材料(____= µ__ = 1)制成复 合材料的等效相对介电常数随入射波频率的变化特 宇航材料工艺 2006年 第 4期 性进行讨论。

为了与有关结果比较,选取文献[9]对金属电 导率为 7.6 ×10⁷ S/m的材料的等效介电常数的实 部及虚部随频率的变化的计算和测量结果。图 2是 等效相对介电常数随频率的变化,比较可见,本文结 果与测量结果也比较吻合。

由于金属趋肤深度 = $\int_{N}^{2} \mu_m \mu_0^{-1}$ 标志着金属 的导电性质,不同的趋肤深度对应着不同的金属材 料,将计算选用不同的金属作为掺杂材料的复合材 料的等效介电常数随频率的变化特性。取金属柱的 直径 2a = 1 mm,层间距为 L = 1 cm,电导率按波长

=1 cm计算。

图 3是以不同趋肤深度的金属柱作为掺料的复 合材料的等效介电常数的实部和虚部随入射波频率 宇航材料工艺 2006年 第 4期 的变化情况。由图可见,掺料的趋肤深度对复合材 料的等效介电常数有较大的影响。当频率低于某一 值时,其等效相对介电常数实部会变为负数;另外, 随着频率的增加,复合材料的等效介电常数的虚部 会减小。并且,随着掺料的趋肤深度的减小,这种金 属-空气复合材料的等效相对介电常数的实部会减 小,而其虚部会增加。介电常数的虚部体现着电介 质损耗的大小,也就是说,随着趋肤深度的减小,这 种材料的电介质损耗会增大。

wave frequency for different materials

3.2 等效介电常数随掺料体积分数的变化特性

对于电导率为 1.1 ×10⁷ S/m 金属柱,半径 a = 0.1 mm,在入射波波长 = 3 cm,改变掺料体积分数,可得等效相对介电常数的实部与虚部随掺料体积分数的变化如图 4所示。由图可见,复合材料的等效介电常数的实部和虚部随掺料体积分数分别呈

减小和增大的变化;当体积分数大于 0.09%时,实 部变为负值,可以制作负折射率材料;而当体积分数 大于 0.02%时虚部会大于零,这标志当金属微粒掺 料在很小的体积分数时就具有了对电磁波的损耗特 性。显然,当体积分数很小时,基体介质体积增大而 金属掺料的体积减小,复合材料主要显现介质性质。 从公式中我们也可以看到,当体积分数趋于零时, (9)式可简化为: reff = d

4 结论

本文讨论无限长的柱状微粒掺杂于空气中而成 的金属柱 - 空气复合材料的吸波特性,计算得到等 效相对介电常数的实部随频率的增加而增大,其虚 部随入射波频率的增加而减小。随着入射波波长的 增加,复合介质的吸波性增强。对于不同的复合材料,随着掺料趋肤深度的减小,这种复合材料的电介质损耗会增大。对于一定频率的入射波,随着金属掺料体积分数的增加,复合材料的等效相对介电常数的实部减小而虚增加,复合材料更加呈现金属性。

以上研究了这种复合材料的电介质损耗特性, 出现了介电常数的虚部为负值的情况,在电磁场中, 介电常数和磁导率具有对称性,负的介电常数的出 现是否预示着负磁导率的出现,从而出现负的折射 率的情况,这是我们要进一步要研究的。

参考文献

1 Sarychev A K, Mcphedran R C, Shalaev V M. Electrodynamics of metal-dielectric composites and electromagnetic crystals Phys Rev Lett, 2000; 62 (12): 8 531 ~ 8 539

2 Lagarkov A N, Sarychev A K, Snychkovich Y R et al Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites Journal of Electromagnetic W ave and Applications, 1992; $6(9): 1\,159 \sim 1\,176$

3 Reynet O, A denot A L, Deprot S et al Effect of the magnetic properties of the inclusions on high-frequency dielectric response of diluted composites Physical Reviewb, 2002; 66 (9): 094412 - 1 ~ 094412 - 9

4 Garcia-Vidal F J, Pitarke J M, Pendry J B. Effective medium theory of the optical properties of aligned carbon nanotubes Phys Rev Lett , 1997; $78(22): 4\ 289 \sim 4\ 292$

5 Giordano Stefano Effective medium theory for dispersions of dielectric ellipsoids Journal of Electrostatics, 2003; (58): 59 ~ 76

6 Lagarkov A N, Semenenko V N, Chistyaev V A. Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions Journal of Magnetism and Magnetic Materials, 2003: 161 \sim 166

7 曹效晖,黄荣芳,闻立时等.微粒子复合体介电特性 的理论研究.科学通报,1995;40(16):1455~1457

8 鲁述,徐鹏根著.电磁场边值问题解析方法.武汉: 武汉大学出版社,1991:95~177

9 Moses C A, Engheta N. Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusion W ave Motion, 2001; 34: 301 ~ 317

(编辑 吴坚)

宇航材料工艺 2006年 第 4期