纳米 SD₂ 改性环氧复合泡沫塑料研究

张万强 杨鸿昌 裴雨辰 赵英民

(航天特种材料及应用研究所,北京 100074)

文 摘 为了提高环氧复合泡沫塑料 (ESF)的性能,扩大应用范围,采用超声波和高剪切分散工艺制备 了纳米 SO₂ 改性 ESF。结果表明:纳米 SO₂ 的添加量质量分数为 3%时,改性效果最好,其拉伸强度、弯曲 强度和不加纳米粒子的 ESF相比,分别提高了 41%、19%;采用扫描电镜 (SEM)对材料的断口形貌进行了观 察,从微观结构上研究了纳米 SO₂ 的加入对 ESF性能的影响;对材料的介电性能测试表明,纳米 SO₂ 粒子 的加入对 ESF的高频介电性能影响不显著;动态力学分析 (DMA)研究表明纳米 SO₂ 粒子质量分数为 1% 时,ESF的 T_g提高了 4 。

关键词 纳米 SD2,纳米复合材料,环氧复合泡沫塑料,超声波

Study on Nano-SiO₂ Reinforced Epoxy Syntactic Foam

Zhang W anqiangYang HongchangPei YuchenZhaoYingm in(Aerospace Research Institute of Advanced Materials and Application Technology, Beijing100074)

Abstract In order to improve the properties and extend the limits of application of ESF (epoxy syntactic foam), ESF filled with nano-SO₂ is prepared by the process of ultrasonic-wave and supershear dispersion. The results indicate that 3% nano-SO₂ content can achieve the best overall properties. Tensile strength and bend strength of ESF are improved by 41% and 19%. The fracture surfaces are examined by scanning electron microscopy (SEM). Electrical property is not changed remarkably. DMA analysis reveals that the T_g is increased by 4 while nano-SO₂ content is 1%.

Key words Nano-SD2, Nanocomposites, Epoxy syntactic foam, Ultrasonic-Wave

1 前言

环氧复合泡沫塑料 (ESF)是指以空心玻璃微珠 或其他中空颗粒与环氧树脂经混合、成型、固化而得 到的一种复合材料^[1]。由于其具有优越的介电性 能、密度低、压缩强度高及加工性能优良等特点,在 用作透波材料方面获得了应用。在 ESF中引入纳 米粒子是一种行之有效的改性方法。由于纳米粒子 粒径小,表面能大,极易团聚,所以解决团聚问题,使 纳米粒子在基体中迅速、均匀分散成为影响纳米复 合材料性能的关键。本文采用超声波和高剪切分散 工艺制备出了性能优良的 SD₂ 改性 ESF。

2 试验

2.1 原材料

环氧树脂 E - 51,上海树脂厂;纳米 SD₂ 粒子, 粒径为 10~15 nm,舟山明日纳米材料有限公司;经 漂洗、筛选、烘干处理的中空玻璃微珠,粒径为 50~ 60 µm,北京亚源益精科贸有限公司;793固化剂,天 津合成材料研究所;KH - 560偶联剂,丹阳有机硅 材料实业;丙酮(分析纯),市售。

2.2 仪器设备

宇航材料工艺 2006年 第 3期

收稿日期: 2004 - 12 - 27;修回日期: 2005 - 06 - 13

作者简介:张万强,1979年出生,硕士研究生,主要从事先进复合材料的研究工作

超声波清洗器:KQ - 300DE型,昆山超声波医 用清洗器有限公司;磁力加热搅拌器:78-1型,江 苏金坛市正基仪器有限公司;高剪切均质乳化机,国 营启东市长江机械厂;电热鼓风干燥箱:OW - 03 型,天津市试验仪器厂。

2.3 试样制备

在磁力加热搅拌器的搅拌下,将烘干脱水的纳 米 SD₂粒子及偶联剂加入到适量丙酮中,搅拌 10 min。后对溶液进行一定时间和强度的超声处理,随 后加入到 70 的环氧树脂中,并对该复合体系进行 高剪切处理。之后利用磁力加热搅拌器的加热搅拌 脱除丙酮。待树脂复合体系冷却后,按配比加入固 化剂、偶联剂和玻璃微珠,搅拌均匀,真空脱泡后浇 入涂有脱模剂的模具中,进行程序升温固化,固化条 件:50 /2 h,90 /3 h。冷却后脱模。

2.4 性能测试

力学性能测试按 GB /T2568—1995《树脂浇铸体拉伸性能试验方法》、GB /T2569—1995《树脂浇铸体压缩性能试验方法》、GB /T2571—1995《树脂浇铸体冲击试验方法》进行。在日产的 Shimadzu AG - 1型 250 kN 电子万能材料试验机上测试;材料的 SEM 断口形貌观察使用日产的 H ITACH I S - 4300型扫描电镜,对试样断口进行喷金处理;材料的介电性能采用短路波导法测试,频率为 10 GHz;材料的动态热力学性能使用 DMA 242型动态力学分析仪,加载方式为单悬臂梁式,测试频率为 5 Hz,温度为 20 ~ 200 ,升温速率为 3 /min,

3 结果与讨论

3.1 SD₂含量对改性 ESF力学性能的影响

纳米 SO₂ 粒子对 ESF力学性能的影响见表 1。 从表 1可以看出,随着纳米 SO₂ 粒子用量的增加, ESF的力学性能逐渐增加。当纳米 SO₂ 粒子的质量 分数为 3%时,其拉伸、压缩、弯曲强度均达到最大值, 继续增加纳米 SO₂ 粒子的用量,材料的力学性能逐 渐下降。

将纳米粒子分散在环氧树脂中,由于纳米粒子粒 径小、比表面积很大,表面严重配位不足,使其表现出 极强的活性,很容易和环氧分子中的氧起键合作用, 提高分子间的键力,增强了粒子与环氧树脂基体的界 面结合;同时纳米粒子与环氧分子链相连,起到类似 物理交联的作用,当其中某一条大分子链受到应力 时,可通过微粒将应力传递到其他分子链上,使应力 分散,即使分子链的某点断裂,其它链仍可起作用,而

宇航材料工艺 2006年 第 3期

不致迅速危及整体。由于纳米粒子与环氧树脂基体 良好的界面结合以及在树脂基体中起到传递应力、均 匀应力的作用,从而提高了材料的力学性能。

表 1 SD₂/ESF的力学性能

140	1 Ivi echa	n kai propo		J_2 / Lor
纳米 SD ₂ 粒子	拉伸强度	压缩强度	弯曲强度	无缺口冲击强
质量分数 /%	/MPa	/MPa	/MPa	度 /kJ ·m ⁻²
0	25. 6	85. 0	44. 3	2.31
1	26.0	86.7	49.4	3. 60
2	29. 1	91. 6	49. 0	-
3	36.0	95. 7	52.7	3. 40
4	34. 6	87. 0	49. 3	-
5	32.5	84. 4	49. 1	3. 42

在 SD₂粒子质量分数为 1%时,ESF的冲击韧 性上升至最大,为 56%,以后随 SD₂含量增加而逐 渐减小。纳米粒子均匀分散于 ESF的基体之中,当 ESF受到冲击时,粒子与基体之间产生微裂纹(银 纹);同时粒子之间的基体产生塑性变形,吸收冲击 能,达到增韧的效果。若纳米粒子含量过高,微裂纹 易发展成宏观开裂,体系性能变差。

3.2 SD₂ /ESF断口形貌分析

从图 1可以看出,圆球状的中空玻璃微珠均匀 分散于环氧树脂中,微珠粒径为 30~90 µm。

图 1 ESF断口 SEM 照片 300 × Fig 1 SEM photographs of ESF 's surfaces

图 2(a)为没有添加纳米粒子的 ESF拉伸断口 形貌,其拉伸强度为 25.6 MPa。由图可以看到清晰 的河流线,断口平滑,裂纹起伏较少,且无纳米 SO2 粒子。图 2(b)为所得纳米 SO2 改性 ESF试样的断 口形貌,其中纳米粒子质量分数为 3%。复合材料 的拉伸强度为 36.0 MPa,与图 2(a)相比,可以看到 分散基本上达到纳米级的纳米粒子,同时断面起伏 不平,河流线蜿蜒曲折,断口形成较多的波纹和鱼鳞 片,可以看出破坏时其吸收更多的能量,故加入纳米 粒子 SO2 后使 ESF的性能明显提高。

(a) 未添加纳米粒子

(b)添加 3%质量分数的纳米粒子
图 2 材料拉伸断口 SBM 照片 10 000 ×
Fig 2 SBM photographs of tensile fracture surfaces

3.3 纳米 SD₂ 粒子对 ESF介电性能的影响

从表 2可以看出,纳米 SO₂ 粒子的加入对 ESF 的高频介电性能影响不明显,这对于用作透波材料 的纳米 SO₂ 改性 ESF具有重要意义。

耒	2	幼米	sn	沙性	FSF的宫题介由性能 ¹⁾
18	4	511/1	01/2	LXIT	

Fab. 2	E lec tr ica l	properties	of nano-S	SD_2/ESF
--------	----------------	------------	-----------	------------

纳米粒子质量分数 /%		tan
0	2.48	0. 015
1	2.48	0. 015
3	2.48	0. 015
5	2.45	0. 015

注:1)测试温度为室温;测试误差 ±0.02, tan ±0.001。

3.4 材料的动态热——力性能

采用 DMA方法测得的纳米 SO₂ 粒子改性 ESF 的 T_{a} 和 tan 峰值见表 3。

Tab 3 T and tan of nano-SD. /FSF

140.5 1	g and an of hand	\mathbf{DD}_2 / \mathbf{EDP}
纳米粒子质量分数 /%	6 T _g /	tan 峰值
0	84. 4	0. 633
1	88.8	0. 607
3	86.6	0. 581
5	84. 5	0. 635

从表 3可以看出,纳米 SD₂粒子的质量分数为 1%时,使 ESF的 T_g 达到最大,随着纳米 SO₂粒子 质量分数的继续增大,ESF的 T_g 开始下降。纳米 SD₂粒子的加入使 tan 峰值降低,当粒子质量分数 为 3%时达到最低,随着纳米粒子质量分数增加, tan 的峰值开始升高。

4 结论

(1)采用超声波和高剪切工艺制作纳米 SD₂ 改 性 ESF,可以得到分散均匀的纳米复合材料。

(2)纳米 SD₂ 的加入,可以使 ESF的拉伸、压 缩、弯曲强度以及冲击韧性明显提高。纳米 SD₂ 粒 子质量分数为 3%时,ESF的拉伸、压缩强度达到最 大值;纳米 SD₂粒子质量分数为 1%时,ESF的冲击 韧性达到最大值。

(3)纳米粒子的分散程度对其改性效果具有重 要的影响,纳米粒子分散越均匀,其改性效果越明显。

(4)纳米 SD₂ 粒子的加入对 ESF的高频介电 性能无明显影响。

(5)纳米 SD₂ 粒子的加入使材料的 T_{g} 有所提高。纳米 SD₂粒子质量分数为 1%时, ESF的 T_{g} 达到最大;纳米 SD₂粒子质量分数为 3%时, ESF的 tan 的峰值降至最低。

参考文献

1 Huang Chuanjun, Zhang Yihe et al Mechanical properties of epoxy composites filled with SiO_2 Nano-particles at room and cryogenic temperatures Acta Material Composite Science, 2004; 21 (4): 77 ~ 81

2 李鹏,刘德安,杨学忠.微球复合泡沫材料的研究和 应用.玻璃钢/复合材料,2000;(4):21~24

3 王贵军,樊洪斌等.玻璃微珠在复合材料中的应用. 纤维复合材料,2001; (3):11~13

4 郑亚萍,宁荣昌.纳米 SD₂ 环氧树脂复合材料性能研究.高分子材料科学与工程,2002;18(5):148~154

5 李小兵. nm SD₂ /环氧树脂复合材料的制备和性能. 湘潭大学硕士学位论文, 1999

6 张文栓,罗运军等.纳米 SD_{2-x}改性环氧复合材料研 究.热固性树脂,2003;18(4):10~13

7 刘泽,李永祥,吴冲若.BaTO₃纳米粒子 环氧精细 功能复合材料的制备及其介电性能的研究.复合材料学报, 1998;15(4):20~23

8 汤戈,王振家,马全友等.纳米 Al₂O₃ 粉末改善环氧 树脂耐磨性的研究.热固性树脂,2002;17(1):4~8

9 高辉.环氧树脂基纳米复合材料的制备、表征及摩擦 学性能的研究.兰州大学硕士学位论文,2002

10 王文一,王国全,陈建峰等.纳米 CaCO₃ /EPR /PP复 合材料性能和结构研究.复合材料学报,2004;21(4):67~70

11 Ochi M, Takahashi R, Terauchi A. Phase structure and mechanical and adhesion properties of epoxy/silica hybrids Polymer, 2001; 42: 5 $151 \sim 5 158$

(编辑 吴坚)

宇航材料工艺 2006年 第 3期

表 3 纳米 SD₂改性 ESF的 T₂和 tan 峰值