热力学模型在氮氧化物陶瓷研究中的应用

 甄 强¹
 王庭云²
 张大海³
 李 榕¹
 严 凯¹

 (1 上海大学材料科学与工程学院,上海大学纳米科学与技术研究中心,上海 200444)
 (2 上海大学上海市光纤重点实验室,上海 200444)

 (3 航天材料及工艺研究所先进功能复合材料技术国防科技重点实验室,北京 100076)

文 摘 用热力学几何规则,对 $S_{i_8}N_4 - AN - A_{i_8}O_3 - SD_2$ 体系中的部分化合物的标准生成吉布斯自由 能进行了预报和评估;用新几何模型计算了 $A_{i_8}O_3 - SD_2 - S_{i_8}N_4 = Z$ 元体系高温液相的热力学性质。为研究 $S_{i_8}N_4 - AN - A_{i_8}O_3 - SD_2$ 体系陶瓷材料在制备和应用条件下的物理化学变化规律提供了热力学数据。此 外,根据预报的热力学数据,计算并给出了 A1-O-N、Si-O-N和 B-O-N体系的参数状态图,为分析和 确定 O - Siabn - BN系复合材料合成和应用的条件提供了理论依据。

关键词 热力学几何规则,几何模型,氮氧化物,热力学数据

Application of Thermodynamic Models on Oxynitride Ceramics

Zhen Q iang¹ W ang Tingyun² Zhang D aha³ L i Rong¹ Yan Ka¹

(1 Nano-Science and Nano-Technology Research Center of Shanghai University,

School of Material Science and Engineering of Shanghai University, Shanghai 200444)

(2 Shanghai Optical Fibre Key Laboratory of Shanghai University, Shanghai 200444)

(3 Aerospace Research Institute of Material and Processing Technology,

National Key Laboratory of Advanced Functional Composite Materials, Beijing 100076)

Abstract According to the thermodynamic geometrical rule, the standard Gibbs free energies of formation of some compounds in $S_{i_2}N_4 - AN - A_{i_2}O_3 - SO_2$ system are assessed and predicted The thermodynamic properties of high temperature liquid phase in $A_{i_2}O_3 - SO_2 - S_{i_3}N_4$ temary system are calculated with new generation geometrical model. It supplies thermodynamic data for studying physical chemistry reaction of $S_{i_3}N_4 - AN - A_{i_2}O_3 - SO_2$ system ceramics on preparation and use condition. In addition, with the thermodynamic data predicted, potential phases diagrams of A1 - O - N, Si - O - N and B - O - N systems are calculated out, which can give us theoretical basis for analyzing and determining preparation and use condition of O - Sialon - BN compounds

Key words The modynamic geometric rules, Geometrical mode, Oxynitride, The modynamic data

1 引言

自 1972年,英国的杰克^[1~2]首先发现在氧化物

和氮化物体系中一系列性能优异的固溶体赛隆以来,到目前为止已发现数十种颇具使用价值的化合

收稿日期: 2005 - 10 - 23

基金项目:国家自然科学基金(20101006,59674028);国防科技重点实验室基金资助(2005JS51469.0201.QT06.1)

作者简介:甄强,1967年出生,教授,主要从事高温及功能陶瓷材料的研究

宇航材料工艺 2006年 第 2期

物,如:Si₈N₄、TN、ADN、Si₈N₂O、Sialon (赛隆)等, 除了具有氮化物和氧化物的优点外,还有各自不同 的特性。例如:AN的热导率高、电绝缘性能良好、 介电损耗低、化学性能稳定,与 Si的线膨胀系数相 近,是大规模集成电路、半导体模块电路和大功率器 件的理想散热材料和封装材料^[3]。AN还有与 A1 等许多有色金属及其合金不浸润的特性,可用作有 色金属熔炼用的坩埚,热电偶的保护管,电子点火器 的火花塞和高档耐火材料的添加剂等。透明的 AN 还可用作光和电磁波的高温窗口^[4~5]。ADN、Sialon具有强度高、热震稳定性好、耐侵蚀等优良的性 能,是陶瓷发动机的首选材料,也是性能优良的近代 耐火材料,还可制成航空航天及武器装备等领域所 需的陶瓷材料^[6]。

然而,上述陶瓷材料主要是非化学计量固溶体 化合物,通过高温实验的方法获得各个化学组成的 热力学数据十分困难。由于缺乏 Siabn的热力学数 据,使研究上述氮化物、氧氮化物陶瓷及其复合材料 在制备和应用条件下的物理化学变化规律遇到了困 难。本文用热力学几何规则^[7~8],对 Si_bN₄ - AN -ALO₃ - SO₂体系中部分化合物的标准生成吉布斯 (Gibbs)自由能进行预报和评估,为研究该体系陶瓷 材料在制备和应用中的物理化学变化规律提供了热 力学数据;并用新几何模型^[9~11]计算了 ALO₃ -SO₂ - Si_bN₄ 三元体系高温液相的热力学性质。

2 Si_i N₄ - AIN - AI₂O₃ - SD₂ 体系中间化合物热 力学性质的预报与评估

2.1 热力学性质预报

从相稳定的自由能最小原则出发,可导出 n(n ≥2)元平衡体系中化合物的摩尔组元标准 Gibbs自 由能与化合物组成之间的关系通式,并得出两者之 间在二元系中应遵循拟抛物线规则,在三元体系中 应遵循拟抛物面规则^[7-8]。

设在 $n(n \ge 2)$ 元平衡体系中,存在 (n + 1)个中 间化合物,它们的成分依次为 $(X_{a1}, X_{a2}, ..., X_{in})$ (i = 1, 2, ..., n, n + 1)。 X_{ij} 为第 *i*个化合物中组元 *j*所含 的摩尔分数,它们的自由能折合成一摩尔组元 (分 子或原子)所对应的量有 G_{i}^{\dagger} 。如果第 n + 1个相 是相图中的一个稳定相,则有:

$$G_{n+1}^{\circ} \leq \sum_{i=1}^{n} \frac{d_i}{d} \cdot G_i^{\circ}$$

$$\tag{1}$$

等号成立时, 第 n+1相与其他 n个相相平衡。式中

$$d = \begin{vmatrix} X_{11} & X_{12} & \dots & X_{1n-1} & 1 \\ X_{21} & X_{22} & \dots & X_{2n-1} & 1 \\ \dots & \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn-1} & 1 \end{vmatrix}$$
(2)

根据热力学几何规则,编制相应的计算机应用 程序,由部分已知化合物的热力学数据^[12~14],预报 出的 Si₂N₄ - AN - A <u>1</u>O₃ - SO₂的中间化合物的标 准 Gibbs自由能数据见表 1。

表 1 部分 Sialon化合物的 G°

Tab. 1 G° of some Sialon compounds

化	合物	G°与 T的关系式
ADN	Al ₃ O ₃ N	- 2001. 295 + 0. 427 <i>T</i>
- Sialon	Si_5AON_7	- 2225. 985 + 0. 878 <i>T</i>
	Si ₂ Al ₄ O ₄ N ₄	- 3325. 200 + 0. 859 <i>T</i>
O - Sialon	$Si_{1\ 96}Al_{0\ 04}O_{1\ 04}N_{1\ 96}$	- 966. 295 + 0. 291 <i>T</i>
	$Si_{1\ 84}Al_{0\ 16}O_{1\ 16}N_{1\ 84}$	- 1010. 141 + 0. 293 <i>T</i>
	$Si_{1\ 8}Al_{0\ 2}O_{1\ 2}N_{1\ 8}$	- 1024. 756 + 0. 294 <i>T</i>
	$\mathrm{Si}_{\mathrm{l}_{6}\mathrm{G}}\mathrm{Al}_{\mathrm{0}_{4}\mathrm{O}_{\mathrm{1}_{4}\mathrm{N}_{\mathrm{1}_{6}\mathrm{O}_{\mathrm{1}_{4}\mathrm{O}_{\mathrm{1}_{4}\mathrm{O}_{\mathrm{1}_{6}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{1}_{6}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}\mathrm{O}_{\mathrm{0}}}}}$	- 1097. 832 + 0. 298 <i>T</i>
X - Siabn	$Si_{12}Al_{18}O_{39}N_8$	- 22438. 3 +4. 633 <i>T</i>
	Si12A118O42N6	- 23298. 12 + 4. 676 <i>T</i>
Sialon 多型体	SiA l ₃ O ₂ N ₃ (8H)	- 1985. 580 + 0. 542 <i>T</i>
	$SiAl_4O_2N_4$ (15R)	- 2308. 560 + 0. $655T$
	SiA l ₅ O ₂ N ₅ (12H)	- 2631. 540 + 0. 768 <i>T</i>
	$SiAl_6O_2N_6$ (21R)	- 2954. 520 + 0. 881 <i>T</i>
	$SiA_8O_2N_8$ (27R)	- 3600. 480 + 1. $107T$
	$SiA l_{10}O_2N_{10}Si$ (33R)	- 4246. 440 + 1. 333 <i>T</i>
- Sialon ^[15]	CaSi ₂ A l ₃ ON ₁₅	- 4009. 358 + 1. 551 <i>T</i>

以 - Sialon, O - Sialon为例,计算出 1 973 K 时 *G* 组成的关系式如下。

- Sialon $(Si_{6-Z}Al_ZO_ZN_{8-Z})$:

宇航材料工艺 2006年 第 2期

2

— 14 —

$$G^{\circ} = -77.824 - 418.980Z + 7.588Z^2$$
 0

O - Sialon $(Si_{1,7}Al_2O_{1+7}N_{2-7})$:

$$G^{\circ} = -378.322 - 331.280Z + 2.272Z^{2}$$

从式 (4)、(5)中可以看出,因为 - Sialon、O - Sialon两种固溶体的成分变化是连续的,所以,不同成 分的 - Sialon, O - Sialon的 G 与组成的关系为 抛物线。

2.2 热力学数据评估

文献 [16] 报道 X - Sialon的标准 Gibbs自由能 与温度的关系式为:

 $_{\rm f}G_{\rm X-Siabn}^{\rm o} = -23808.\ 261+5.\ 454T$ (6)将 X - Siabn的标准 Gibbs自由能换算成在 AbO3 - $SD_2 - Si_3N_4$ 三元体系中的摩尔组元 (Alo3, SD₂, $Si_{k}N_{a}$)生成 Gibbs自由能与温度的关系式为

 $_{\rm f}G_{\rm X-Sialon}^{o^{\star}} = -1\ 400.\ 486 + 0.\ 321T$ (7)在 T=1 800 K时.

 $_{\rm f}G_{\rm X-Sialon}^{\rho^{\star}} = - 822.686$

利用前面预报的结果,将 $A_{1}O_{3}$ - SO_{2} - $Si_{3}N_{4}$ 体系 1 800 K时的摩尔组元 (A₁O₃, SO₂, S₁N₄)生 成 Gibbs自由能对组成作图,得到如图 1所示的拟 抛物面。从图中可以看出, X - Sialon 摩尔组元 Gibbs自由能的值位干拟抛物面的下方,即没有在 拟抛物面上。这违背了稳定相的自由能最小原理。 因此,可以断定文献中给出的 X - Sialon的标准 Gibbs自由能与温度的关系式是不可靠的。

式中, $G_{i_{i}}^{E}$, 是 i - j二元系的超额自由能, $X_{i(i_{i})}$ 和 $X_{j(i-j)}$ 为 *i*-j二元系中 *i*和 *j*组元的摩尔分数, A_{i-j}^{0} , $A_{i_{1}}^{1}$, ... $A_{i_{1}}^{m}$ 是与温度有关的参数。

以三元体系为例,三个二元系的成分可选为

$$X_{1(1-2)} = x_1 + \frac{1}{1-2} x_3 \tag{10}$$

$$X_{2(2-3)} = x_2 + {}_{2-3} x_1 \tag{11}$$

$$X_{3(3-1)} = x_3 + {}_{3-1}x_1 \tag{12}$$

式中, x₁、x₂和 x₃为三元系中各组元的摩尔分数。 1.2、2.3和 3.1为与二元系有关的相似系数。

从式 (10) ~式 (12) 可以看出, 在新几何模型 中,二元系成分点的选择与三元系紧密相关。比如, 二元系 1 - 2中 $X_{1(1-2)}$ 成分点的选择依赖于另外两 个二元系 2-3和 3-1的超额自由能:相似系数 1. 表征了组元 3与 1和 2的相似程度,把组元的对 宇航材料工艺 2006年 第 2期

 $< Z \leq 4.2$

 $0 < Z \le 0.4$

图 1 A_bO₃ - SO₂ - Si_bN₄体系的 $_{f}G_{f}^{o^{*}}$ 组成关系 Fig 1 Relation of ${}_{f}G_{f}^{o^{*}}$ in A ${}_{2}O_{3}$ - SO₂ - Si₃N₄ system 3 几何模型在 AlO₃ - SD₂ - Si₁N₄ 三元体系研 究中的应用

周国治^[9~10]最近提出的新几何模型,克服了以 往模型的缺陷,在很多方面显示出优越性。根据该 模型,多元系的超额自由能可表示为:

$$G^{\rm E} = \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} \frac{X_i X_j}{X_{i(i-j)} X_{j(i-j)}} \cdot G^{\rm E}_{i-j}$$
(8)

式中, G^{t} 为多元系的超额自由能; X_{i} 、 X_{i} 为多元系 中各组元的摩尔分数; n代表组元数;通常 G^{E} 表 示成 Ridlich - Kister^[17]多项式:

 $G_{i-i}^{E} = X_{i(i-i)} X_{i(i-i)} \left[A_{i-i}^{0} + A_{i-i}^{1} \left(X_{i(i-i)} - X_{i(i-i)} \right) + A_{i-i}^{2} \left(X_{i(i-i)} - X_{i(i-i)} \right)^{2} + \dots + A_{i-i}^{m} \left(X_{i(i-i)} - X_{i(i-i)} \right)^{m} \right] (9)$ 称性定量化表示出来;当其中两个组元完全相同时. 可以从该模型把三元系的超额自由能的表达式还原 为二元系的形式。

> 图 2为用新几何模型计算得到的 Alo3 - SO2 - Si_kN₄ 三元体超额 Gibbs自由能。图 2还给出了 对称 (Kohler, Colinet和 Muggianu) 与非对称 (Toop) 模型的计算结果,其中 Toop 模型分别用 SD₂、Si_kN₄ 和 AbOs为非对称组元。计算结果表明,各几何模 型的结果有很大不同。Toop模型选用不同组元作 为非对称组元,差别最大。当 SigNa 为非对称组元 时计算结果与新几何模型吻合较好;而选择 SD₂、 AlO,时,偏差较大。因为该体系是一个非对称体 系,所以用其他几种对称几何模型计算时,也会引起 偏差。

> > — 15 —

(4)

(5)

Fig 2 Excess ${}_{f}G^{o}$ of A ${}_{2}O_{3}$ - SiO₂ - Si₃N₄ system

图 3为 $A_{\frac{1}{2}O_3}$ - SO_2 - $S_{\frac{1}{2}N_4}$ 三元体系摩尔混 合 Gibbs自由能 ($S_{\frac{1}{2}N_4}$ / SO_2 = 1)。

图 3 Al₂O₃ - SD₂ - Si₂N₄ 三元体系摩尔混合 _fG^{*}_f Fig 3 Mixing _fG^{*}_f for Al₂O₃ - SO₂ - Si₃N₄ system 要正确表达一个体系的热力学性质 .选择适

当的模型 (包括非对称组元的分配) 至关重要。非 对称模型考虑了各组元性质之间的不同,但它仍然 是一种特殊情况,即假设三元系中的两组元完全相 似,不够全面。而新几何模型通过相似系数把各组 元热力学性质之间的关系清楚地反映出来,打破了 人为划分的对称与非对称之间的界限。另外,二元 成分选点及权重的分配与体系的性质密切相关,因 而更符合实际情况。在一个多元系中,由于组元数 较多,各组元之间的相对关系也就比较复杂,靠传统 定性的方法很难确定出适当的模型。而新几何模型 无论体系的组元数有多少,以定量的方式通过相似 系数准确的反映了各组元热力学性质之间的关系, 因而该模型在应用方面更加方便、合理。

4 O - Sialon - BN体系热力学参数状态图

热力学参数状态图是复相材料化学设计的基础。O - Siabn是 Si₂N₂O与 Al₂O₃ 形成的固溶体化 合物,对于 O - Siabn - BN复合材料,可以借助 Si -O - N、A1 - O - N、B - O - N体系的参数状态图分析 确定其合成和应用的条件。根据前面对 Si₂N₄ -AN - Al₂O₃ - SO₂ 体系中间化合物热力学性质预 报的结果,表 2列出了 1 873 K时上述三个体系包 含的凝聚相及其平衡分压的关系。

表 2 1 873 K时 Si-O-N Al-O-N B-O-N 体系凝聚相及其平衡分压

1ab. 2 Condensed phases and their equilibrium partial pressure for S1-U - N. A1-U - N and B

体系	凝聚相	平衡分压
Si - O - N 体系	$SD_2(s) = Si(s) + O_2(g)$	$lg(P_{0_2}/P^0) = -15.74$
	- Si_3N_4 (s) = 3Si(s) + 2N ₂ (g)	$\lg(P_{\rm N2}/P^0) = -1.16$
	$SO_{2}(s) + N_{2}(g) = Si_{2}N_{2}O(s) + 3/2O_{2}(g)$	$lg(P_{N_2}/P^0) = 3/2 lg(P_{O_2}/P^0) + 20.15$
	$2 - \ Si_{3}N_{4} \ (\ s) \ + 3 \ / 2O_{2} \ (\ g) \ = 3 Si_{2}N_{2}O \ (\ s) \ + N_{2} \ (\ g)$	$lg(P_{N_2}/P^0) = 3/2 lg(P_{O_2}/P^0) + 29.36$
	$Si_2N_2O(s) = 2Si(s) + N_2(g) + 1/2O_2(g)$	$lg(P_{N_2}/P^0) = 1/2 lg(P_{O_2}/P^0) - 11.34$
A1- O - N 体系	$2A1(s) + 3/2O_{1}(s) = A1O_{1}(s)$	$lg(P_{O_2}/P^0) = -19.88$
	$A1(s) + 1/2N_2(g) = AN(s)$	$\lg(P_{\rm N2} / P^0) = -6.21$
	$2A l_7 O_9 N (s) + 3/2 O_2 (g) = 7A l_2 O_3 (s) + N_2 (g)$	$lg(P_{N_2}/P^0) = 3/2 lg(P_{O_2}/P^0) + 22 04$
	$7A l_3O_3N(s) + 3O_2(g) = 3A l_7O_9N(s) + 2N_2(g)$	$lg(P_{N_2}/P^0) = 3/2 lg(P_{O_2}/P^0) + 23.14$
	$3AN(s) + 3/2O_2(g) = A_3O_3N(s) + N_2(g)$	$lg(P_{N_2}/P^0) = 3/2 lg(P_{O_2}/P^0) + 24.18$
	$2A l_7 O_9 N(s) = 14A l(s) + 9O_2(g) + N_2(g)$	$lg(P_{N_2}/P^0) = -9 lg(P_{O_2}/P^0) - 187.17$
	$2A l_3O_3N(s) = 6A l(s) + 3O_2(g) + N_2(g)$	$\lg(P_{N_2}/P^0) = -3\lg(P_{O_2}/P^0) - 67.01$
B - O - N 体系	$2B(s) + 3/2O_2(g) = B_2O_3(s)$	$lg(P_{O_2}/P^0) = -15.51$
	$B(s) + 1/2N_2(g) = BN(s)$	$\lg(P_{N_2} / P^0) = -4.82$
	$2BN(s) + 3/2O_2(g) = B_2O_3(s) + N_2(g)$	$lg(P_{N_2}/P^0) = 3/2 lg(P_{O_2}/P^0) + 18.45$

宇航材料工艺 2006年 第 2期

— 16 —

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

按表 2中的关系式作图,可得到由 Si-O-N 系,A1-O-N系和 B-O-N系叠加的热力学参数 状态图,如图 4所示。

从图 4可以看出: 1 873 K下 Si₂N₂O₅Al₂O₃和 BN 三个化合物稳定存在的气氛条件为:当 P_{N2} = 1. 013 × 10⁵ Pa时, P_{O2}约为 1. 013 ×10⁵ Pa。所以,O - Sialon - BN在 1 873 K合成时,必须有高纯氮气保护,并应 在适当氧分压和氮分压条件下进行反应烧结。

图 4 Si-O-N系, Al-O-N系和 B-O-N系 叠加的参数状态图 (1 873K)

Fig 4 Phase stability diagram as a function of partial pressure of nitrogen and oxygen for Si - O - N, A1- O - N and B - O - N system

5 结论

(1)利用热力学几何规则对 $S_{i_8}N_4 - AN - A_{16}O_3 - SO_2 体系中部分中间化合物的标准生成吉$ $布斯自由能进行预报和评估,可为研究 <math>S_{i_8}N_4 - AN - A_{16}O_3 - SO_2 体系陶瓷材料在制备和应用条件下的物理化学变化规律提供热力学数据。$

(2)利用新几何模型和其他几种典型几何模型,可预报 A LO3 - SO2 - S LN4 三元体系高温液相的热力学性质,填补了文献中尚缺乏的热力学数据。

(3)根据对 Si₃N₄ - AN - Al₂O₃ - SO₂ 体系中 间化合物热力学性质预报的结果,可计算并给出 Si - O - N, Al - O - N, B - O - N体系的参数状态图, 为分析确定 O - Sialon - BN系复合材料合成和应用 的条件提供了理论依据。

参考文献

1 Jack K H, W ilson W I Ceramics based on the Si - Al-O - N and related system. Nature (London), Phys Sci , 1977; 238: 28 \sim 29

2 Thommmy Ekstrom, Mats Nygren Sialon Ceramics J. 宇航材料工艺 2006年 第 2期 Am. Ceram. Soc., 1992; 75(2): 259 ~ 276

3 Khor KA, Cheng KH, Yu L G et al Thermal conductivity and dielectric constant of spark plasma sintered alum inum nitride Materials Science and Engineering, 2003; A347: 300 ~ 305

4 Adam T, Kolodzey J, Swann C P et al The electrical properties of m is capacitors with A N gate dielectrics Applied Surface Science, 2001; 428: $175 \sim 176$

5 Oliveira IC, Massi M, Santos S G et al Dielectric characteristics of A N films grown by d c magne-tron sputtering discharge Diamond and Related Materials, 2001; 10: 1 317 ~ 1 322

6 Schnick Wolfgang Nitridosilicates, oxonitridosilicates (sions), and oxonitridoalum inosilicates (sialons) new materials with promising properties International Journal of Inorganic Materials, 2001; (3): 1 267 ~ 1 272

7 李文超,周国治,王俭等.三元系中拟抛物面规则及 其实验验证.钢铁,1996;31(3):31~34

8 李文超,王俭,李兴康等.拟抛物面规则在氧化物陶 瓷相图中的应用.硅酸盐学报,1996;24(1):80~84

9 Chou K C A general solution model for predicting ternary themodynamic properties, CALPHAD, 1987; 11: 293 ~ 298

10 Chou K C,LiW C,LiF S et al Formalism of new ternary model expressed in terms of binary regular-solution type parameters CALPHAD, 1996; 20: 395 ~ 341

11 甄强,李文超.新一代几何模型与对称和非对称模 型的应用比较.金属学报,1999;35(7):748~750

12 David R, Jr Lide JANAF Themochemical Tables 3rd Edn 1707 building, Dow Chemical USA, Midland, Michigan 48674, USA: American Chemical Society and American Institute of Physics for NBS, 1986:

13 Willems H X et al Thermochemical Tables 3rd Edn, American Chemical Society and American Institute of Physics for NBS, 1986: 7

14 Gunn D A. A theoretical evaluation of the stability of sialon-bonded silicon carbide in the blast furnace environment J. Eur Ceram. Soc , 1933; (11): $35 \sim 41$

15 王浩,高濂,冯景伟等.Ca--Siabn纳米相复合材料.无机材料学报,1995;10(2):180~182

16 Zhou Y, V leugels J, Laoui T et al Preparation and properties of X-Sialon Journal of Materials Science , 1995; 30: 4 584 \sim 4 590

17 Redlich O, Kister A T. Thermodynamic model Ind & Eng Chem. , 1948; 40(2): 345 ~ 350

(编辑 吴坚) — 17 —

7