碳纤维增强陶瓷基复合材料抗氧化涂层研究进展*

邹世钦 张长瑞 周新贵 曹英斌

(国防科技大学航天与材料工程学院国防科技重点实验室,长沙 410073)

文 摘 对碳纤维增强陶瓷材料抗氧化涂层的要求、组成与制备工艺以及最近抗氧化涂层体系的发展 做了综述、并且对今后抗氧化涂层的发展作了一些展望。

关键词 碳纤维,陶瓷基复合材料,抗氧化涂层,氧化保护

Development of Anti-oxidation Coatings of Carbon Fiber Reinforced Ceramic Matrix Composites

Zou Shiqin Zhang Changrui Zhou Xingui Cao Yingbin

(Key Laboratory of National Defense Technology, College of Aerospace & Materials Engineering, National University of Defense Technology, Changsha 410073)

Abstract The requirements and composition of anti-oxidation coatings and fabrication processes of preparing coatings as well as the progress of oxidation protection system over the past years are reviewed. Also, development of these coatings is forecast.

Key words Carbon fiber , Ceramic matrix composite , Anti-oxidation coating , Oxidation protection

1 前言

碳纤维增强陶瓷基复合材料作为高温热结构材 料在航空、航天和能源领域的应用已经引起了广泛 的关注,在发达国家新一代发动机和热机的研究中, 它是提高发动机或热机燃烧室温度,进而提高能源 转化率最理想的热结构材料之一。

碳纤维增强陶瓷基复合材料拥有良好的高温力 学性能和热性能,在惰性环境中超过2000 仍能保 持强度、模量等力学性能不降低,拥有良好的断裂韧 性和耐磨性能、低线膨胀系数、高热导率、高气化温 度和良好的抗热震性能,但是在氧化性气氛中,高于 400 碳纤维就会氧化,材料性能降低,导致材料失 效。这是影响碳纤维增强陶瓷基复合材料在氧化性 气氛中长效应用的致命弱点,为此必须解决材料的

抗氧化性问题。

碳纤维增强陶瓷基复合材料的抗氧化性研究主 要集中在两个方面:(1)通过对基体材料的处理来增 强材料的抗氧化性能,如殷小玮等通过在基体孔隙 中渗入融熔 Si 和 Cr 反应生成 Cr₃Si 来增强抗氧化性 能^[1];S.Labruqu èe 等通过在碳纤维表层形成 B 化合 物膜层来增强材料抗氧化性能^[2~6];(2)通过整体抗 氧化涂层增强材料的抗氧化性能。在两种处理方式 中,整体抗氧化涂层更为有效。本文仅对整体抗氧 化涂层的发展进行综述和展望。

2 抗氧化涂层的要求

抗氧化涂层的基本功能是将基体材料与外部的 氧化性气氛隔离。要有效地实现其隔离功能,抗氧 化涂层体系必须满足一些基本要求:(1)涂层材料在

宇航材料工艺 2003 年 第6期

收稿日期:2003-01-27;修稿日期:2003-05-06

^{*}国家"863"前沿探索研究项目基金资助:863 - 702;国防预研基金资助项目:41 312 011 002

邹世钦,1970年出生,博士研究生,从事陶瓷基复合材料的研究工作

所保护温度范围稳定,涂层体系和基体材料有良好的粘接作用,涂层与基体及涂层与涂层之间不剥落 (分离);(2)涂层材料与基体间有相近的线膨胀系数 (CTE);(3)涂层材料氧和碳的扩散系数低;(4)涂层 材料与基体间有好的化学和物理相容性;(5)作为结 构部件使用通常会受热流的冲蚀,在这种环境中使 用涂层材料必须有良好的抗冲蚀性能等等。

碳纤维增强陶瓷材料通常在高温环境中用作结 构部件,其环境温度可能在非常短的时间内变化幅 度达到上千摄氏度。在如此剧烈的温度振动下,涂 层材料与基体材料间的线膨胀不可能完全匹配,基 体材料的线膨胀系数较低,当温度低于涂层的制备 温度时,涂层会形成微裂纹,这些微裂纹就会形成氧 扩散到材料内部的通道。为了在涂层材料存在微裂 纹的温度范围内仍能对基体材料进行有效保护,延 长抗氧化寿命,涂层体系必须有自愈合功能,能够形 成可流动的玻璃相,填补微裂纹,阻挡氧化气氛通过 这些裂纹扩散,因此通常抗氧化涂层由多种材料和 多层涂层组成。

如图 1 所示,典型的涂层体系由粘接层、功能层 和抗冲蚀层组成。当然并不一定是三层涂层,有一 些涂层体系,在一层内实现以上二层功能,也有三层 以上涂层体系,其中多层只承担某一层的功能。但 是总体来说涂层体系要实现这三种功能。

图 1 涂层体系的基本组成

Fig. 1 Basic composition of coatings system

3 抗氧化涂层的材料组成

3.1 抗冲蚀层材料

抗冲蚀层的功能是阻挡氧气进入材料内部,抵 抗气流冲蚀。抗冲蚀层的材料最常用的是 SiC 和 Si₃N₄。SiC 没有熔点,在 2 100 由 相转变为 相, 在 (2 830 ±40) 分解;Si₃N₄ 熔点为 1 900 。两者 都有极好的抗氧化功能和高温下极低的挥发性,同 宇航材料工艺 2003 年 第 6 期 时 SiC 和 Si₃N₄都有极高的硬度和抗冲蚀强度。SiC 氧化后生成的固相产物为 SiO₂; Si₃N₄氧化后生成 Si₂N₂O,Si₂N₂O 具有致密的网络结构,在氧化气氛中 极为稳定,Si₃N₄氧化速率比 SiC 更慢^[7]。但是,SiC 和 Si₃N₄作为抗冲蚀涂层材料不能适应于含熔融盐、 水气、H 和碱性的环境中,燃油中生成的 Na₂SO₄和 Na₂CO₃能分解 SiC 和 Si₃N₄,水气与之反应生成气相 的 Si (OH)₄,H 能导致还原为气相的 SiO^[8~11]。

Sheehan 通过计算得出作为抗冲蚀层材料,其蒸 气压达到 0.13 Pa 时的温度不能低于 1 695 ^[12]。 除 SiC 和 Si₃N₄ 外还有一些物质可以作为抗冲蚀层 材料, Ir 曾被用来作抗冲蚀层涂层材料。Ir 的熔点 为 2 440 ,氧渗透率低,但是它的价格贵、涂层制备 工艺复杂、线膨胀系数与陶瓷材料不匹配及易生成 挥发的 IrO₃ 等原因限制了它的应用^[13]。另外 Al_2O_3 、 Y_2O_3 、 Ta_2O_5 、 Si_2N_2O 、 ZO_2 和莫来石(3 Al_2O_3 · 2 SiO_2)等氧化物陶瓷也可作外层涂层材料^[14~17]。

3.2 功能层材料

功能层的作用是形成玻璃态可流动物质封填涂 层微裂纹,阻止氧的进入。最初用作功能层的材料 的是 P_2O_5 、 B_2O_3 、 SiO_2 等玻璃态物质,单独使用时 P_2O_5 的温度限制在 600 以下,而 B_2O_3 在 600 ~1 100 ,SiO_2则在 1 100 以上,为了实现在全温度范 围的封填作用,可以将它们按比例混合;也可以掺入 难熔氧化物以降低挥发性,实现更大温度范围的封 填作用。适合的氧化物包括 TiO₂、 ZrO_2 、 HrO_2 、 Al_2O_3 、 Y_2O_3 、 Sc_2O_3 、 La_2O_3 、 SiO_2 、 CeO_2 等^[18]。

目前常用的功能层材料是能氧化形成玻璃态物 质的化合物, B_4C 、 TiB_2 、Si - B、Si - W、Si - Hf、 $Si - Zr^{[14,19^{-24}]}$ 等。Courtois 等通过 CVD 沉积 TiB_2 于 SiC 外层下保护 C/SiC,是在 700 ~1 100 有前途的封 填材料。硼化硅有一个独特的优点,被氧化后形成 硅酸硼玻璃而没有其它产物,产物能通过硼化物的 组成来确定,这意味着可以为特定的温度范围设计 功能层材料^[25]。MoSi₂ 也被用作功能层材料,氧化 生成挥发性的 MoO₃ 和玻璃质的 SiO₂^[26,27]。

3.3 粘接层材料

粘接层的功能是粘接基体与涂层系统,减少涂 层与基体间的线膨胀系数不匹配的影响,阻挡基体

材料组成元素向外扩散。粘接层材料最常用的是 SiC和 Si₃N₄,它们有与基体材料相近的线膨胀系数, 为了降低线膨胀系数,可以在制备涂层时加入低线 膨胀系数的材料,如 BN 和石英等^[12,28]。

4 抗氧化涂层制备工艺

根据不同涂层材料的理化性能及具体的涂层用 途,发展了多种涂层工艺。目前已经应用于制备碳 纤维增强陶瓷基复合材料抗氧化涂层的工艺主要有 以下几种。

4.1 化学气相沉积

化学气相沉积压(CVD)法是抗氧化涂层制备应 用最广泛的工艺,SiC、ZB₂、B₄C、Si - B - C、 HTC^[3,14,29,30]等涂层可以通过 CVD 工艺制备。如 SiC的 CVD 涂层制备用三氯甲基硅烷(MTS),H₂ 作 载气,Ar 作为稀释气体,在1000 以上沉积;B₄C的 CVD 涂层制备则用甲烷、B₃Cl、Ar 等在950 以下沉 积。CVD 涂层均匀致密,涂层厚度容易控制,缺点 是周期较长,设备投资较大。

4.2 粉体/泥浆烧结

粉体烧结是将涂层材料的粉浆均匀涂于基体材 料表面,干燥后于高温烧结。功能层 B_2O_3 、 Si_3N_4 、 SiO_2 、 ZiB_2 、 TiO_2 、 ZiO_2 、 HO_2 、SiC、 Al_2O_3 等化合物可以 通过粉体烧结工艺制备。如 Cairo 等将质量分数为 40% $ZiB_2 + 50$ %SiC + 10% Al_2O_3 的粉末混合、球磨 后,将碳纤维增强的陶瓷基复合材料试样置于石墨 坩埚中用混合物粉末包埋,于1600 烧结6h,得到 功能梯度涂层,在1000 以下有极好的抗氧化保护 作用^[31]。

4.3 原位反应

原位反应不仅可以制备陶瓷基体,也可以制备 陶瓷涂层。C/C材料通过Si粉包覆,在1400 ~1 600 下处理,可以在表面生成SiC层。Si-Zr、Si-W、Si₃N₄、Cr₃Si、TiN、TiC^[14,19,32]等涂层均可以通过原 位反应制备。通过原位反应制备的一个例子是在碳 纤维增强陶瓷表面制备一层CVD—SiC,再涂敷Y₂O₃ 粉浆,干燥后在含微量氧的保护性气氛中于1700 处理,形成YSiO₅-Y₂Si₂O₇涂层,其抗氧化保护温度 达1600 以上^[16,17]。

脉冲激光具有能量高且非常集中的特点,脉冲 激光可以熔化高熔点化合物制备涂层,且一步到位, 基体材料温度变化小^[33]。H. Fritze 等通过高能 CO_2 脉冲激光(= 10.6 µm, t = 170 µs, $J = 3 \times 10^7$ W cm) 在碳纤维增强陶瓷基复合材料表面制备莫来 石涂层,基体温度的升高不超过 100 ,所得涂层均 匀、致密,在空气中的抗氧化保护温度达 1 900 K^[18,34]。

5 近年来发展的几种涂层体系

通常碳纤维增强陶瓷基复合材料抗氧化涂层体 系由多层组成。如 Gujard 等开发的 G/SiC 材料抗 氧化保护体系由 SiC/B₄C/SiC 三层组成,三层均由 CVD 工艺制备,内层 SiC 120 µm~140 µm,B₄C 层 10 µm~15 µm,外层 SiC 40 µm~60 µm,涂层总厚度约 160 µm~200 µm^[35]; Franc 等开发的 SiC/AlN/Al₂O₃ 三层体系,外层可以是 Al₂O₃、HO₂、ZO₂等,中间层 可以是 TiB₂、AlN、HN、ZrC、Pt、Ir 等,用该涂层体系 的空间 飞行器部件使用温度达到 2 000 ^[36]; Bentson 等认为 C/C 材料的保护层体系由四层组成, 最内层是 B 或 B₄C+ 锆化物,第二层是 B₄C+SiO₂ + Li₂ZO₂ + SiC + 沥青,第三层是 B₄C,最外层是 SiC,由 于功能层自愈合封填作用强,该体系有极好的抗热 震性^[37]。

Cairo 等通过将 ZB₂ - SiC - Al₂O₃ 三种混合物的 粉末涂敷在 C/C 材料表面于 1 600 烧结得到抗氧 化涂层,在单层内各组分成梯度分布,具备粘接、自 愈合、抗冲蚀功能^[31]; Kondo 等以 Y₂O₃ 粉末在 CVD —SiC 内层上于 1 500 以上烧结,得到 SiC/ Y₂SiO₅ - Y₂Si₂O₇ - Y_xSi_y 二层抗氧化保护体系,在 1 600 以上仍有良好的抗氧化保护作用^[16,17,19]。

另外在抗氧化涂层体系的设计上出现了一些新 的思路。Wunder 等在 C/C 材料上制备了 PyC/ HFC/ SiC 三层保护体系(图 2),PyC 层的厚度仅为 5 μm, 其作用是缓和外层与 C/C 材料间的线膨胀系数不 匹配性,称为润滑层,涂层体系的总厚度不到 80 μm,在含 SO₂ 的氧化气氛中于 1 450 试验 100 h 无 任何失重,材料强度保持 80 %^[38]。

Aoki 等以化学气相渗透(CVD)工艺在 C/C材料 上制备了 C 与 SiC 相间多层涂层(图 3),控制各层的 宇航材料工艺 2003 年 第6期 CVD 制备温度不同,其裂纹形成温度也不同,由于整个涂层由很多层组成,裂纹在层间偏转,难以形成从基体一直到外层的裂纹,整个涂层对 C/C 材料具有极好的抗氧化保护作用^[39]。

图 2 PyC/ HfC/ SiC 三层保护体系

Fig. 2 Protection system of PyC/ HfC/ SiC coatings

图 3 C与 SiC 相间多层涂层

Fig. 3 C and SiC composite coatings

Naslain 等以化学气相渗透法(CVI) 工艺制备了 基体与涂层融为一体的碳纤维增强抗氧化保护陶瓷 材料(图 4),基体为(PyC - SiC),或(BN - SiC),,每 层的厚度为几十纳米,在氧化性气氛中,PyC - SiC 或 BN - SiC 既是基体又是涂层,有裂纹自愈合功能, 能有效阻挡氧气扩散保护碳纤维不被氧化^[40,41]。

图 4 (BN - SiC) "基体/ 涂层体系 Fig. 4 System of (BN-SiC) " substrate/ coatings

6 结语

碳纤维增强陶瓷基复合材料的抗氧化保护研究 已经取得很大的进展。硅化物和硼化物是应用最为 宇航材料工艺 2003 年 第6期 广泛的涂层材料。典型的抗氧化涂层体系由粘接 层、活性功能层和抗冲蚀层组成,但是近来由两种材 料组成的多层复相涂层展示了更优良的抗氧化保护 性能,这为抗氧化涂层的研究开拓了新的思路,由不 同材料组成的复相涂层将成为新的抗氧化涂层研究 的热点,将会开发出许多更加有效的抗氧化保护涂 层体系。

参考文献

1 Yin Xiaowei ,Cheng Laifei et al. Microstructure and oxidation resistance of carbon/ silicon carbide composites infiltrated with chromium silicide. Mater. Sci. & Eng. A ,2000 ;290 :89 ~ 94

2 Labruqu è S,Blanchard H et al. Enhancement of the oxidation resistance of interfacial area in C/ C composites. Part II: oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon.J. Eur. Ceram. Soc. ,2002;22:1011~1021

3 Labruqu de S, Gueguen J S et al. Enhancement of the oxidation resistance of the interfacial area in C/C composites. Part III: the effect of oxidation in dry or wet air on mechanical properties of C/C composites with internal protections. J. Eur. Ceram. Soc. , 2002;22:1023 ~ 1030

4 Labruqu è S, Blanchard H et al. Enhancement of the oxidation resistance of interfacial area in C/C composites. Part I: oxidation resistance of B-C, Si-B-C and Si-C coated carbon fibres. J. Eur. Ceram. Soc. ,2002;22:1 001 ~ 1 009

5 Labruqu de S, Pailler R et al. Internal protection of C/C composites by boron based compounds. J. Eur. Ceram. Soc. ,2002; 22:987 ~ 999

6 Lu Weiming ,Chung D D L. Oxidation protection of carbon materials by acid phosphate impregnation. Carbon ,2002;40:1 249 \sim 1 254

7 Ogbuji L U J T. Role of Si_2N_2O in the passive oxidation. J . Am. Ceram. Soc. ,1992 ;75 :2 995

8 Cheng Laifei ,Xu Yongdong et al. Corrosion of a 3D-C/ SiC composite in salt vapor environments. Carbon ,2002 ;40 :877 ~ 882

9 Lee K N, Miller R A, Jacobcon N S. New generation of plasmar sprayed mullite coatings on silicon carbide. J. Am. Ceram. Soc., 1995;78:705 ~ 710

10 Westwood M E, Webster J D et al. Oxidation protection for carbon fibre composites. J. Mater. Sci. ,1996;31:1 389 ~ 1 397

11 Carruth M, Baxrwe D et al. Hot corrosion of silicon carbide in combustion gases at temperatures above the dew point of salts. J. Eur. Ceram. Soc. ,1998;18:2 331 ~ 2 338

12 Sheehan J E. Oxidation protection for carbon fiber composites. Carbon ,1989 ;27 :709 ~ 717

— 19 —

13 Rodionova, Veniaminovna V, Kravetkii et al. Anti-oxidation protection of carbon-based materials. US Pat 5 660 880, 1995

14 Leite H, Dambacher U et al. Microstructure and properties of multilayer coatings with covalent bonded hard materials. Surf. Coat. Tech. ,1999;116 ~ 119:313 ~ 320

15 Fan Z, Song Y et al. Oxidation behavior of fine-grained $SiC-B_4C/C$ composites up to 1400 . Carbon ,2003 ;41 :429 ~ 436

16 Aparicio M, Dur **á** A et al. Yttrium silicate coatings for oxidation protection of carbon silicon carbide composites. J. Am. Ceram. Soc. ,2000;83:1 351 ~ 1 355

17 Webster J D, Westwood M E et al. Oxidation protection coatings for C/ SiC based on yttrium silicate. J. Eur. Ceram. Soc. , 1998; $18:2345 \sim 2350$

18 Fritze H ,Jojic J et al. Mullite based oxidation protection for SiC⁻C/C composites in air at temperatures up to 1 900 K.J. Eur. Ceram. Soc. ,1998;18:2 351 ~ 2 364

19 Cheng Laifei , Xu Yongdong et al. Effect of carbon interlayer on oxidation behavior of C/ SiC composites with a coating from room temperature to 1 500 \cdot . Mater. Sci. Eng. A ,2001;300:219 ~ 225

20 Cheng L ,Xu Y. Oxidation and defect control of CVD SiC coating on three-dimensional C/ SiC composites. Carbon , 2002 ;40 : 2 229 ~ 2 234

21 Cheng Laifei , Xu Yongdong et al. Effect of glass sealing on the oxidation behavior of three dimensional C/ SiC composites in air. Carbon ,2001 ;39 :1 127 ~ 1 133

22 Webster J D, Hayes F H et al. Thermodynamic modelling and experimental studies in the design of integrated oxidation protection systems for ceramic matrix composites. Key. Eng. Mater. , 1997; $127 \sim 131$: $1225 \sim 1232$

23 Westwood M E, Day R J et al. The use of finite element analysis in the design of integrated oxidation protection systems for ceramic matrix composites. Key. Eng. Mater., 1997; $127 \sim 131:1233 \sim 1240$

24 Cheng Laifei , Xu Yongdong et al. Oxidation behavior of C-SiC composites with a Si-W coating from room temperature to 1 500 . Carbon , 2000; 38:2 133 ~ 2 138

25 Carter , John A. Oxidation protection for carbon/ carbon composites ,US Pat. 5 536 574 1995

26 Lin Wenyi ,Hsu Jenyan ,Speyer R F. Stability of molybdenum disilicide in combustion gas environments. J. Am. Ceram. Soc. , 1994 ;77 :1 162 ~ 1 168

27 Jeng YL ,Lavernia EJ. Processing of molybdenum disili-

cide. J. Mater. Sci. ,1994 ;29 :2 557 ~ 2 564

28 Barrett D M ,Laughn W L et al. Symp. High Temp. Compos. In : Proc. Am. Soc. Compos. ,1989 :282 ~ 289

29 Wunder V K, Schmidt S, Edelmann E et al. Coating of continuous carbon fibres with PyC/ TiN by chemical vapor deposition. Gyfada Athens ,2001:26 \sim 31

30 Zhu Yaocan ,Ohtani S et al. Formation of a functionally gradient $(Si_3N_4 + SiC) / C$ layer for the oxidation protection of carbon carbon composites. Carbon ,1999 ;37 :1 417 ~ 1 423

31 Cairo C A A , Graca ML A et al. Functionally gradient ceramic coating for carbon-carbon antioxidation protection. J. Eur. Ceram. Soc. ,2001 ;21 :325 ~ 329

32 Roos E, Maile K et al. (Cr-Al) bi-layer coatings obtained by ion assisted EB PVD on C/C-SiC composites and Ni-based alloys. Surf. Coat. Tech. $,2002;151 \sim 152;429 \sim 433$

33 Snell L ,Nelson A et al. A novel laser technique for oxidation resistant coating of carbon carbon composite. Carbon ,2001 ;39 : 991 ~ 999

34 Fritze H ,jojic J et al. Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1 900 K. Key. Eng. Mater. ,1997;132 ~ 136:1 629 ~ 1 632

35 Goujard S, Vandenbulcke L et al. The oxidation behaviour of two- and three- dimensional C/ SiC thermostructural materials protected by chemical-vapour-deposition polylayers coatings. J. Mater. Sci., 1994;29:6 212 ~ 6 220

36 Franc O ,Macret J L. In: Proceedings of ESA Symposium , ESTEC. Noordwijk ,1990

37 Bentson L D ,Price R J et al. Moisture and oxidation resistant carbon/ carbon composites ,US Pat. 5 298 311 ,1994

38 Wunder V , Popovska N et al. Multilayer coatings on CFC composites for high-temperature applications. Surf. Coat. Tech. , 1998; $100 \sim 101$: $329 \sim 332$

39 Aoki T, Hatta H et al. SiC/ C multi-layered coating contributing to the antioxidation of C/ C composites and the suppression of through-thickness cracks in the layer. Carbon ,2001;39:1 477 ~ 1 483

40 Naslain R, Pailler R et al. Processing of ceramic matrix composites by pulsed CVI and related techniques. Key. Eng. Mater. ,2002;206 ~ 213:2 189 ~ 2 192

41 Lamouroux F, Bertrand S et al. Oxidation resistant carbor fiber reinforced ceramic matrix composites. Compos. Sci. Tech., 1999;59:1 073 ~ 1 085

(编辑 李洪泉)

宇航材料工艺 2003 年 第6期