原位聚合法制备三维编织纤维增强尼龙复合材料*

张宗强¹ 王玉林² 万怡灶² 李 \mathbf{z}^2 赵伟栋¹

(1 航天材料及工艺研究所,北京 100076)(2 天津大学材料科学与工程学院,天津 300072)

文 摘 选择液态原位聚合法成功地制备出性能较好的三维编织碳纤维增强尼龙 6 复合材料 (C_{3D} / PA6) 及三维编织芳纶纤维增强尼龙 6 复合材料 (K_{3D} / PA6);并对两种复合材料的力学性能进行了比较。研究发现, C_{3D} / PA6 的弯曲强度和弯曲模量均高于 K_{3D} / PA6,而 K_{3D} / PA6 则比 C_{3D} / PA6 具有更高的抗冲击强度和剪切强度。

关键词 原位聚合,三维编织,复合材料,尼龙

Preparation of 3-D Braided Fiber Reinforced Nylon Composites Using In-situ Polymerization

Zhang Zongqiang¹ Wang Yulin² Wan Yizao² Li Jian² Zhao Weidong¹

(1 Aerospace Research Institute of Materials and Processing Technology, Beijing 100076)

(2 College of Materials Science and Engineering , Tianjin University , Tianjin 300072)

Abstract In-situ polymerization has been used to synthesize 3-D braided carbon fiber reinforced PA6 (C_{3D} / PA6) and 3-D braided Kevlar fiber reinforced PA6 (K_{SD} / PA6) and their properties have been studied. It has been found that C_{3D} / PA6 has higher flexural properties than K_{SD} / PA6, while K_{3D} / PA6 has better impact strength and shear strength than C_{3D} / PA6.

Key words In-situ polymerization ,3-D braid ,Composites ,Nylon

尼龙是一种重要的热塑性工程塑料,具有优异的性能。但由于尼龙分子对温度、水分较为敏感,随 温度、湿度的增大,其机械性能下降(冲击性能增 大^[1]),尺寸稳定性受到影响;为此早在70年代以前,人们就开始采用玻璃纤维、碳纤维或 Kevlar 纤维 等进行增强以改善其性能^[2~5]。纤维增强复合材料 可分为长纤维和短纤维两种增强形式,研究表明,长 纤维复合材料具有优良的抗冲击性能,但与短纤维 复合材料相比又有加工困难的缺点。目前长纤维复 合材料的趋势是在加工上完善新的工艺方法。三维 编织复合材料由于异型件一次编织成型,纤维贯穿 材料的三个方向形成三维整体网状结构,所以克服 了传统复合材料沿纤维横向的刚度和强度性能较 差,层间剪切强度低,易分层且冲击韧性和损伤容限 都很低等弱点;因此将拥有广阔的发展前景。然而, 国内关于三维编织纤维增强尼龙复合材料的报道并 不多,原因在于制备工艺尚不成熟。三维编织复合 材料最适宜的制备技术是树脂传递模塑(RTM)工 艺,但 RTM 工艺对基体要求苛刻(如粘度,固化时间 等),使得三维编织复合材料的基体仅限于一些低粘

宇航材料工艺 2003 年 第5期

收稿日期:2003 - 01 - 02;修回日期:2003 - 04 - 27

^{*}天津市科技计划项目(重大攻关):013 111 711;天津市自然科学基金:013 604 211 资助

张宗强,1977年出生,硕士研究生,主要从事树脂基复合材料的研究工作

度的热固性聚合物。本试验采用液态原位聚合方法 分别制备了三维编织碳纤维增强尼龙 6 复合材料 (Cm/PA6)与三维编织芳纶纤维增强尼龙6复合材 料(Km/PA6),两种复合材料的纤维体积分数均为 30 %,编织角 16°.并对其力学性能进行了初步研 究。

1 实验

1.1 原材料

碳纤维为 T300, $= 1.76 \text{ g/ cm}^3$, $_{b} = 3.43 \text{ GPa}$, E = 230 GPa;芳纶纤维为 Kevlar49, = 1.44 g/cm³, b = 3.26 GPa, E = 102 GPa; 单体为己内酰胺(CL), 工业纯:催化剂为 NaOH.分析纯:活化剂为甲苯二 异氰酸脂(TDI),分析纯。

本试验采用空气氧化法处理碳纤维,该方法操 作简单、成本低、污染小.易于实现。由于芳纶纤维

和尼龙的分子结构中都有酰胺基团 — C—NH— 两 者分子间有氢键存在,化学亲合性较好,因此无需进 行表面处理。

1.2 制备工艺

将三维编织纤维铺入模具充分预热:在三口瓶 中熔融己内酰胺单体,并于120 直空脱水:加入 NaOH,在一定温度下继续真空处理 15 min,加入活 化剂充分搅拌后即可浇入模具;在低于170 条件 下保温 30 min、冷却、脱模。

1.3 力学性能测试

主要对试样的弯曲强度(模量)、冲击强度及剪 切强度进行了测量。弯曲强度参照 GB9341-88,在 LJ -- 5000 拉力试验机上进行;冲击实验参照 GB1043 ---79.在 UT/10/40 简支梁摆式冲击试验机上 进行,试样为无缺口小试样,跨距 50 mm;剪切试验 采用自制剪切模具进行,试验方法与 Kettunen^[6]的 相似。

1.4 SEM 分析

在 XL30ESEM 型扫描电子显微镜下对 Cap/ PA6 及 Kap/ PA6 两种复合材料的断口进行观察。

2 结果与讨论

本试验分别测试了 C3D/ PA6、K3D/ PA6 两种复合 材料及 PA6 基体的力学性能,见表 1。由表 1 可知, 通过液态原位聚合法所制备的 Cap/ PA6 及 Kap/ PA6 宇航材料工艺 2003 年 第5期

复合材料的力学性能较 PA6 基体有明显提高。为 进一步研究不同增强纤维对复合材料力学性能的影 响.对 Cap/ PA6 及 Kap/ PA6 复合材料的力学性能进 行了比较分析。

表1 C_{3D}/ PA6 与 K_{3D}/ PA6 复合材料性能比较¹⁾

Tab.1 Comparative mechanical properties of C_{3D}/ PA6 and K_{3D}/ PA6

试样	弯曲强度 / MPa	弯曲模量 / GPa	冲击强度 / kJ -m ⁻²	剪切强度 / MPa
纯基体	78.6	A	10.6	59.0
C _{3D} / PA6	395.4	18.0	32.4	130.3
K _{3D} / PA6	243.3	16.3	126.7	160.3

注:1) Vf=30%,编织角16°。

2.1 弯曲性能

三维复合材料沿某一方向(以x方向为例)的 弯曲强度与弯曲模量为:

$$\begin{cases} c_x = {}_{\mathrm{f}} V_{\mathrm{f}x} + {}_{\mathrm{m}} V_{\mathrm{m}} \\ E_{\mathrm{c}x} = E_{\mathrm{f}} V_{\mathrm{f}x} + E_{\mathrm{m}} V_{\mathrm{m}} \end{cases}$$
(1)

式中, $x_x \in E_x$ 为复合材料在x方向上的弯曲强度与 弯曲模量: $f_{x,E}$ 为纤维的拉伸强度和拉伸模量: $m_x E_m$ 为基体的弯曲强度及弯曲模量; V_{f_x} 为沿 x 方 向纤维体积分数: Vm 为基体体积分数。

由公式(1)可知,不同纤维增强相同树脂基体 时,在纤维体积分数一定的条件下,复合材料沿某一 方向的性能取决于该方向增强纤维的性能。实验中 所用碳纤维与芳纶纤维的三维编织体具有相同的编 织参数,即沿轴向的纤维比例相同。试样在弯曲过 程中沿轴向受到拉伸作用力,由于碳纤维拉伸强度 与拉伸模量均高于芳纶纤维,因此 Cap/ PA6 复合材 料弯曲强度及弯曲模量均高于 Km/PA6 复合材料。 另外,弯曲过程中材料受力状态较为复杂,一侧受拉 另一侧受压,且芳纶纤维压缩强度低,这也是芳纶纤 维复合材料弯曲强度低于碳纤维复合材料的原因之 一。两种复合材料的弯曲载荷 — 挠度曲线见图 1。

从图 1 可以看到, C_{3D}/ PA6 复合材料的弯曲曲 线呈双线性特征 .且在达到最大载荷后即发生完全 断裂,材料表现为脆性断裂:而 Kap/ PA6 复合材料在 较大变形的情况下仍未发生完全破坏,弯曲曲线继 续向后延伸,说明该材料韧性较好。

— 41 —

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 C_{3D}/ PA6 与 K_{3D}/ PA6 的弯曲载荷 — 挠度曲线

Fig. 1 Load-deflection curves of $C_{3D}/\ PA6$ and $K_{3D}/\ PA6$

2.2 冲击及剪切性能

2.2.1 冲击性能分析

由表 1 可知,经三维编织纤维增强的复合材料 力学性能均比未增强的纯尼龙基体有了明显的提 高,C_{3D}/ PA6 复合材料冲击强度比纯尼龙基体提高 3 倍多,K_{3D}/ PA6 复合材料提高幅度更大。碳纤维的 断裂应变为 1.5%,芳纶纤维断裂应变为 2.7%^[7], 可见,芳纶纤维较碳纤维有更好的韧性,因此其复合 材料的抗冲击性能强于碳纤维复合材料。

从两种复合材料的冲击断口形貌看(图2),C_{3D}/ PA6 复合材料断口平整,纤维无太多拔出[图2(a)、 (c)];而 K_{3D}/PA6 复合材料断口处,芳纶纤维拔出明 显且呈紊乱状态[图2(b)]。芳纶纤维由于韧性极 好,纤维拔出后并未立即断裂,而是被拉伸延长,并 能够继续承受应力直至断裂,其拔出纤维呈针状[图 2(d)]。C_{3D}/PA6 复合材料冲击破坏后的试样有明 显的断痕,材料表现出脆性断裂特征;而 K_{3D}/PA6 复 合材料冲击破坏后只发生不可回复的变形,试样并 未折断,表现为韧性断裂特征,有较好的耐冲击性。

(a) C_{3D} / PA6 100 ×

(b) K_{SD} PA6 50 ×

(c) C_{3D} / PA6 2 000 ×

(d) K_{SD}/ PA6 800 ×
图 2 复合材料冲击断口形貌
Fig. 2 Impact fracture surfaces of C_{3D}/ PA6 and K_{SD}/ PA6

2.2.2 剪切性能分析

由表 1 可知, K_{3D}/ PA6 复合材料剪切强度高于 C_{3D}/ PA6 复合材料,这一点与冲击性能测试结果相 似。剪切过程中,纤维在承受部分纵向拉伸作用力 的同时,还要承受横向剪切作用,纤维发生扭曲变形 后,继续在作用力方向上承受拉应力。由于纤维在 剪切过程中受力及变形较为复杂,韧性好的芳纶纤 维复合材料表现出比脆性的碳纤维复合材料更好的 抗剪切性能。

3 结论

(1)液态原位聚合能够在常压和较低温度条件 宇航材料工艺 2003 年 第5 期

7

42

下制得三维编织纤维增强尼龙 6 复合材料;工艺简 单,且复合材料力学性能较好。

(2) C_{3D}/ PA6 复合材料比 K_{3D}/ PA6 复合材料具 有更高的弯曲强度与弯曲模量; K_{3D}/ PA6 复合材料 则比 C_{3D}/ PA6 复合材料具有更优良的抗冲击性能及 更高的剪切强度。

参考文献

1 王有槐,王新华,朱培.铸型尼龙实用技术.中国石油 化学工业出版社,1994:2

2 任紫菊,宁荣昌.碳纤维增强 MC 尼龙的研究.复合 材料学报,2000;17(2):16

3 王有槐.聚酰胺工程塑料的发展.工程塑料的应用,

1993;21(2):52

4 Mayer J ,Haan J D , Kirch M et al. Structure and mechanical properties of knitted carbon-fiber-reinforced polyamide 12. Journal of Thermoplastic Composite Materials ,1999 ;12 (7) :317

5 卢红, 危大福, 郑安呐. 凯芙拉纤维/ 尼龙 6 热塑性复 合材料的研制. 合成纤维工业, 2002; 25(2):35

6 Kettunen J ,Makela E A , Miettinen H et al. Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite : An experimental study on rabbits. Biomaterials ,1998 ;19 (14) :1219

7 沃丁柱.复合材料大全.化学工业出版社,2000:102

(编辑 任涛)

(上接第16页)

17 Zimmermann A, Rödel J. Generalized orowar-petch plot for brittle fracture.J. Am. Ceram. Soc. ,1998;81(10):2527~2532

18 GB/ T1964 — 1996 多孔陶瓷压缩强度试验方法.

19 GB/T1965—1996 多孔陶瓷弯曲强度试验方法.

20 Jill Gass S, Green D J. Permeability and infiltration of partially sintered ceramics. J. Am. Ceram. Soc. , 1999; 82(10): 2745 ~ 2752

21 Innocentini M D M, Pandolfelli V C. Permeability of porous ceramics considering the klinkenberg and inertial effects. J. Am. Ceram. Soc. ,2001;84(5):941 ~ 944

22 Innocentini M D M, Salvini V R, Pandolfelli V C. The Permeability of ceramic foams. Am. Ceram. Soc. Bulletin. ,1999;78 (9):78 ~ 84

23 Makoto Nanko , Kozo Ishizaki ,Takao Fujikawa. Porous ceramic filters produced by hot isostatic pressing. J . Am. Ceram. Soc. , 1994 ;77 (9) :2 437 ~ 2 442

24 Salvini V R ,Innocentini M D M ,Pandolfelli V C. Optimizing permeability , mechanical strength of ceramic foams. Am. Ceram. Soc. Bulletin ,2000 ;78 (5) :49 \sim 54

25 GB1968-80 多孔陶瓷透气度试验方法.

26 GB/ T1969 — 1996 多孔陶瓷渗透率试验方法.

27 罗森诺 W M. 传热学基础手册. 科学出版社, 1992:

304 ~ 341

28 沈军,王珏,吴翔. 气凝胶——一种结构可控的新型 功能材料. 材料科学与工程,1994;12(3):1~5

29 黎青等. 多孔陶瓷的应用与发展. 材料导报,1995; 10(6):10~13

30 Hrubesh L W, Poco J F. Thin aerogel films for optical , thermal , acoustic and electronic application. Journal of Non-Crystalline Solids. 1995;188(1):46 ~ 53

31 王珏, 沈军, Fricke J. 高效隔热材料掺 TiO₂ 及玻璃纤 维硅石气凝胶的研制. 材料研究学报, 1995; 12(6):568~572

32 Litovsky Him Ya, Michael Shapiro. Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: part 1, refractories and ceramics with porosity below 30 %. J. Am. Ceram. Soc. ,1992;75(12):3 425 ~ 3 439

33 Irina fedina, Efim Litovsky, Michael Shapiro, Arthur shavit. Thermal conductivity of packed beds of refractory particles: experimental results. J. Am. Ceram. Soc. , 1997; 80(8): 2 100 ~ 2 108

34 Hass D D , Prasad B D , Gass D E ,Wiedemann K E. Reflective coating on fibrous insulation for reduced head heat transfer. NASA -19708, 1997:8

(编辑 马晓艳)

宇航材料工艺 2003 年 第5期

7