3D 封装 BGA 器件控温焊接工艺研究

郭立1 高鹏2 张婷婷2 耿煜2 田翔文2

(1 中国空间技术研究院,北京 100094)(2 航天恒星科技有限公司,北京 100095)

文 摘 航天用3D封装BGA器件在印制板组装件的焊接过程中存在温度限制,无法与其他大尺寸面阵列器件(例如BGA、CCGA、LGA)的焊接温度相兼容,在回流焊过程中需对3DBGA器件实施控温焊接。本文专为3D封装BGA器件设计了回流焊控温焊接工装,并构建了热仿真模型,模拟了该器件在回流焊过程中的焊接情况。同时,还对采用控温工装进行的回流焊接过程进行了试验,以验证仿真数据的准确性。结果显示,控温工装能有效降低器件温度,其中工装顶部遮挡了焊接环境中上部的射流,对器件温度的影响最为显著。试验结果与仿真结果相吻合,证实了仿真结果的准确性和有效性,表明可采用仿真方法缩短实验周期。对使用工 装回流焊接后的器件进行微观组织分析发现,焊接后的器件焊点完整,无明显缺陷,内部状态良好,焊点均形成了连续的扇贝状界面层,且IMC层厚度均满足航天标准要求。

关键词 3D 封装,BGA,控温,回流焊,仿真分析 中图分类号:TN605 DOI:10.12044/j.issn.1007-2330.2025.01.012

Research on Temperature Controlled Reflow Soldering Process for 3D Packaged BGA Device

GUO Li¹ GAO Peng² ZHANG Tingting² GENG Yu² TIAN Xiangwen² (1 China Academy of Space Technology, Beijing 100094) (2 Space Star Technology Co. Ltd., Beijing 100095)

Abstract The 3D packaged BGA devices used in aerospace had temperature limitations during the soldering process of printed circuit board assemblies, which were incompatible with the soldering temperature of other large-sized surface array devices (such as BGA, CCGA, LGA). Therefore, temperature controlled soldering was required for the 3D BGA devices during the reflow soldering process. This article designed a reflow soldering temperature controlled soldering fixture for 3D packaged BGA devices, established a thermal simulation model, simulated the soldering process of the device during reflow soldering. Additionally, experiments were conducted on the reflow soldering process using the temperature controlled fixture to verify the accuracy of the simulation data. The results show that temperature control fixtures can effectively reduce device temperature, and the top of the fixture blocks the upper jet in the welding environment, which has the greatest impact on device temperature. The experimental results are consistent with the simulation results, proving that the simulation results is conducted on the device after reflow soldering using fixtures. The solder joints of the device are intact, without obvious defects, and the internal state is good. The solder joints form a continuous scallop shaped interface layer, and the thickness of the IMC layer meet the requirements of aerospace standards.

Key words 3D packaging, BGA, Temperature control, Reflow soldering, Simulation analysis

0 引言

随着宇航高可靠电子产品复杂度的日益提升, 航天电子设备PCB的设计密度急剧攀升,大量采用 面阵列器件(诸如 BGA、CCGA、LGA)且单板用量增 至 3-6片,使得 14层、18层乃至更多层数的 PCB 设计 愈发普遍。在此情境下,采用有铅焊料混装时,回流

第一作者简介:郭立,1975年出生,高级工程师,主要从事航天产品工艺管理工作。E-mail:guoli2002@sohu.com 通信作者:高鹏,1987年出生,高级工程师,主要从事宇航电子产品高可靠电装技术研究工作。E-mail:encoregp@163.com

— 87 —

收稿日期:2024-05-26

焊接的峰值温度往往需达到225~250℃,部分情况下 甚至更高。然而,受限于封装材料及工艺,部分元器 件的本体温度上限不得高于210℃。对于需整板一 次回流焊接的面阵器件/无铅器件而言,不耐高温器 件的温度控制难以满足厂商要求;若对此类器件采 取降温后二次乃至多次回流焊接,热冲击则可能给 PCB、元器件及其焊点带来质量风险。返修工作站通 常采用底部整体预热、顶部局部加热的开放式结构, 其控温效果与精度大打折扣,且一次仅能焊接一片, 效率低下。尤其当器件本体不耐温且具有一定厚度 时,难以在保证良好焊点形成(>210℃)的同时,防 止器件本体超温(<210℃)。无论是采用多次回流 还是返修工作站焊接,产品的可靠性与生产效率均 难以得到有效保障^[1-4]。国内外针对3D封装器件焊 接控温技术的研究较为稀缺,陈帅等[5]人则对印制板 组件回流焊的表面温度场进行了仿真分析,所得结 果与实测温度相近;王海超等^[6]人对CCGA芯片落焊 过程中的控温进行了探索,主要聚焦于CCGA器件在 返修台落焊时的温度控制,提及导热挡板能有效调 控高温区域。此外,还有国内学者对器件返工返修 中的隔热材料进行了相关研究。3D封装的DDR2存 储器本体温度限制低于215℃,与面阵器件/无铅器 件整板回流焊接时,其本体温度同样难以满足厂商 要求。为确保产品长期可靠性并提升生产效率,需 对 3D BGA 封装的 DDR2 存储器回流焊接工艺进行 优化,旨在保证器件本体温度不超限(215℃)的同 时,使采用SnPb共晶焊料的焊点温度维持在210~ 225 ℃[5],从而实现与其他大尺寸器件一次性完成整 板回流焊接,为航天产品特殊场景下的高可靠应用 提供指导。

本文以 3D BGA 封装的 DDR2 存储器为研究对象,通过设计隔热工装、进行回流焊仿真与试验,验 证控温焊接的有效性,并通过微观组织分析证明工 艺方法的可靠性。

1 试验

1.1 材料及设备

试验对象选取 3D PLUS公司生产的 DDR2 模块, 该器件采用 Flow2 叠层封装技术生产和制造,内部包 含 3 层 PCB,通过三维叠层封装,使用环氧树脂灌封, 组成 BGA 封装的 DDR2 存储器模块。焊球成分 Sn10Pb90,焊接时本体温度不超过 215 ℃,见图 1。

选择某型号产品中含有3DBGA器件的印制板, 印制电路板尺寸:189mm×153mm×2mm,16层,印制 板基材:FR-4,该印制板组装件整板回流焊接设置峰 值温度为235℃,正常焊接时3DBGA器件无法满足 215℃的控温要求,使用Sn63Pb37焊膏。

图 1 3D BGA DDR2 存储器 Fig. 1 The DDR2 memory of 3D BGA

主要设备包括:热风回流焊设备(Hotflow3/14)、 返修工作站(CRS 10)、测温仪等。

1.2 仿真模型建立

1.2.1 焊接环境模型建立

印制板组件在热风回流焊炉中如图2所示,热传递的方式主要是热对流和热辐射。热风由回流焊炉上方和下方的圆形喷嘴中喷出,圆形喷嘴射流如图3所示。

图2 回流焊过程示意图

Fig. 2 Schematic diagram of reflow soldering process

Fig. 3 Schematic diagram of air nozzle

其中,圆形喷嘴的直径为3.5 mm,回流焊上、下出 风模块流量均为500 m³/h,共10个温区20个模块,单个 模块13×51个出风口,出口风速约为21.7 m/s,对流值 为100%。焊接流场模型见图4,中间是印制电路板和 元器件,上下分别是出风口的流场分布。回流焊接温 度曲线选择原型号产品整板一次焊接温度曲线,返修 工作站焊接选择常用对应器件的温度曲线。

— 88 —

图 4 SMT流场分布示意图 Fig. 4 Schematic diagram of SMT flow field distribution

1.2.2 3D BGA 印制板组装件仿真模型建立

基于3D-BGA所使用的印制板1建立3D器件及印 制板的仿真模型,如图5所示。其中印制板为16层板, 厚度为2mm,主要由FR-4和Cu两种材料构成,材料参 数如表1所示,印制板每层的覆铜层信息如表2所示。

图 5 印制板组件仿真模型 Fig. 5 Simulation model of printed board components 表1 印制板材料参数

Tab. 1	Material	parameters	of PCB
		Parameters	

材料	$ ho/(\mathrm{kg}\cdot\mathrm{m}^{-3})$	$C/\mathbf{J} \cdot (\mathbf{kg} \cdot \mathbf{K})^{-1}$	$\lambda/W(m\boldsymbol{\cdot} K)^{\!-\!1}$
Cu	8 930	414.8	385
FR-4	1 859	1 600	0.29

表 2	印制板每层	的覆铜层信	恴
	ating inform	ation for a	ah lawan a

1 401 2	copper co	and more than the	intion for v	cuen nuge	
叠层名	覆铜率	覆铜厚度	叠层名	覆铜率	覆铜厚度
	1%	/µm		1%	/µm
top	54	30.48	GND9	97	30.48
GND2	97	30.48	POW10	90	30.48
ART3	64	30.48	GND11	97	30.48
GND4	97	30.48	ART12	82	30.48
ART5	59	30.48	GND13	97	30.48
GND6	97	30.48	ART14	67	30.48
POW7	90	30.48	GND15	97	30.48
GND8	97	30.48	Bottom	74	30.48

3D器件等效模型如图6所示,由环氧树脂封装、 BT基板、高铅焊球和焊料组成。

根据元器件的外形、尺寸及印制板布局空间进行 宇航材料工艺 http://www.yhclgy.com 2025年 第1期

图 6 3D BGA器件仿真模型 Fig. 6 The simulation model of 3D BGA device

焊接控温工装设计,工装采取四角支撑,顶部封闭阻挡 回流焊炉内热风直吹,通过调整工装四个侧面板与印 制板之间的间隙(工装开口)大小调节温度。工装与元 器件保留安装间隙1.5mm,确保安装过程和焊接过程 不接触器件,根据器件厚度和尺寸将工装开口调节范 围定为0~5mm。工装材料选择聚酰亚胺,如图7所示。

图7 工装模型 Fig.7 The tooling model

1.3 回流焊实验

主要控制的焊接参数是在固定的回流焊温度条件下(SMT温度曲线设置见表3)焊点的峰值温度在210~225℃,同时保证器件本体上表面温度不超过215℃。固定回流焊温度曲线的原因是,该温度曲线为某型号产品焊接整板其他器件的曲线,本实验中的3D器件需要与整板其他一同焊接,该回流曲线参数条件下无焊接工装时3D器件本体峰值温度无法满足215℃的限制要求,因此需要进行控温焊接保证回流曲线温度的兼容性。

表3 SMT温度曲线设置						
	Tab.	3 SMT	temperat	t <mark>ure sett</mark> ir	igs	°C
退区 1	沮反 2	沮反 3	润区1	迎区 5	轨道速度	
111112.1	11111122	ш 🗠 Ј	1111 (23. 7		$/\text{cm} \cdot \text{min}^{-1}$	
150	175	185	195	205		
温区6	温区7	温区8	温区9	温区10	60	
235	235	100	80	60		

回流焊接测试实验流程见图8,热电偶分别贴在3D BGA上表面、外排焊点和内排焊点,分别监测器件本体 和焊点温度。工装预先使用聚酰亚胺双面胶黏贴工装 四角,并使用返修工作站的对准系统将工装安装在相 应位置。焊接实验时,每次工装调整1.5 mm开口尺寸。

— 89 —

Fig. 8 Flow chart of the experiment

2 结果与分析

2.1 仿真结果

仿真分析结果如表4所示,从表中可以看到当工 装开口为5 mm时,器件表面温度最高为198.9℃,符 合器件要求的215℃限制,焊点温度为211.9℃,符 合焊点温度的210~225℃的要求。

表4 仿真分析结果				
Tab. 4	Results of si	mulation analy	sis	
工装开口/mm	内排焊点/℃	外排焊点/℃	器件表面/℃	
无工装	221.0	222.0	218.0	
0.5	200.0	210.0	106.0	

0.5	209.0	210.0	196.0
2.0	209.0	210.0	197.0
3.5	210.0	211.0	198.0
5.0	211.2	211.9	198.9

如图 9-图 10 所示, 3D 器件表面温度最高为 198.9℃,焊点温度为211.9℃,离工装最近的影响 区范围温度为221℃,与无工装的焊点温度接近,工 装对周边温度影响较小,因此工装尺寸的变化对实 验结果影响不大,需要注意的是工装尺寸要考虑器 件周围空间和置取的便捷性。

图 9 表面温度最高时云图 Fig. 9 Cloud image at the highest surface temperature

图 10 工装周围温度云图 Fig. 10 Temperature cloud image around the tool — 90 —

2.2 试验结果

使用隔热焊接工装进行回流焊接温度测试实 验,待印制板组件降至室温后将温度测试结果导出, 记录焊接时各个测试位置的焊接曲线,峰值温度,工 装开口尺寸等数据,结果如表5所示,器件本体温度 均低于215℃,焊点温度在工装开口3.5和5mm时 符合210~225℃的温度要求。

表 5 回流焊测温实验结果 Tab. 5 Results of reflow soldering

工装开口 /mm	内排焊点 /℃	外排焊点 /℃	器件表面 /℃	本体限制温 度/℃
无工装	221.7	223.1	220.4	
0.5	208.0	209.1	191.5	
2.0	209.8	210.9	194.7	215
3.5	211.5	212.4	196.9	
5.0	213.3	214.2	197.3	

2.3 仿真数据与试验数据对比分析

图 11~图 13 展示了仿真数据与试验数据的对比 情况。

图11 内排焊点仿真数据与试验数据对比

Fig. 11 Comparison between simulation data and test data of internal row solder joints

从图 11-图 13 中可以观察到(这里要综合看三 张柱状图):仿真数据与试验数据相吻合,这验证了 仿真结果的准确性,表明仿真模型及温度场的构建 是合理的,实际应用中采用仿真分析可显著减少实 验环节;在有工装的情况下,相较于无工装,器件上 表面温差可达20~30℃,焊点温差则为10~15℃,降 温效果显著:同时,在有工装时,四个侧面板的开口 尺寸对器件本体及焊点温度产生了一定影响,实测 最大影响为6℃。上述结果的主要成因在于,焊接过 程中元器件的热传递主要依赖于上部的射流、侧面 的对流以及底部的热传导,其中,上部出风口的射流 和底部印制板焊盘的热传导起主要作用,而侧面的 空气对流影响相对较小[5]。因此,在温度曲线恒定的 回流焊过程中,要控制器件温度,关键在于调控上部 的射流,而侧面开口尺寸则可作为辅助的微调手段。 值得一提的是,前期实验中尝试了不同材料的工装, 如合成石、石棉片等,均能实现降温效果,但工装材 料的选择主要基于耐高温性和易于加工的原则,故 最终选用了聚酰亚胺材料,因其既耐高温又便于加 工。只要能在回流焊过程中保持不变形,有效阻挡 上部射流,即可起到降低器件本体温度的作用。因 此,工装材料的变化对温度控制的影响并不显著。

2.4 微观组织分析

对使用控温焊接工装回流焊接的3DBGA器件焊 点做SEM微观组织分析和成分分析,验证工艺的可靠 性。微观组织分析剖切位置见图14,分别对3DBGA的 外排焊点和内排焊点进行扫描电镜观察。

如图 15、图 16 所示, 3D BGA 焊点界面处均形成 了连续扇贝状金属间化合物,界面处无裂纹或明显 缺陷,从 SEM 图可以看到内焊点界面 IMC 厚度约为 1.65~2.06 µm,外排焊点界面 IMC 厚度约为 1.34~ 2.47 µm,都在 1~2.5 µm 间,满足 Q/QJB 235—2014 的要求^[7],对 IMC 层进行了能谱分析,如表6所示,金 宇航材料工艺 http://www.yhclgy.com 2025年 第1期 属间化合物为典型的Cu₆Sn₅,未出现Cu₃Sn 脆化物, 焊点质量良好^[8]。

图 14 3D BGA 器件剖切位置 Fig. 14 Cutting position of 3D BGA device

图15 3D BGA 内排焊点的 SEM 图

Fig. 15 Scanning electron microscopy of 3D BGA inner row solder joints

图 16 3D BGA 外排焊点的 SEM 图 Fig. 16 Scanning electron microscopy of 3D BGA external

soldering joint

	表6 能谱分析结果	
	Tab. 6 Results of EDS	%
元素	质量分数	原子分数
Cu	37.95	53.40
Sn	62.05	46.60
总量	100.00	100.00

从图 15 和图 16 中可以看到焊料部分有片状、块状粗大的组织,主要是由于焊接过程中高铅焊球(Sn10Pb90)中 Pb 原子由高铅部位向熔融焊料内扩

— 91 —

散,形成了高铅亚共晶化合物;同时焊接过程中印制 板上印刷的Sn63Pb37焊锡膏熔化,Sn元素和焊盘Cu 元素结合,形成Cu₆Sn₅(即IMC层),由于Pb和Cu无 法形成金属间化合物,也无法形成固溶体,Sn与Cu 的结合导致焊料一侧Sn原子减少,液态金属中Pb原 子逐渐富集,冷却过程中在紧邻IMC层的焊锡柱一 侧产生"串状、米粒状"富Pb过共晶化合物。

3 结论

(1)隔热工装能有效降低器件温度,其顶部设计 阻挡了焊接环境中上部的射流,对器件温度的影响 尤为显著,可使本体温度降低20~30℃。

(2)仿真结果与试验结果高度一致,这证明了仿 真模型的建立是合理的,边界条件的设置也是准确 的。因此,仿真结果准确有效,可用于缩短实验周 期。仿真与试验均显示:器件在回流焊接过程中,本 体温度能够降至215℃以下,同时焊点温度保持在 210~225℃。

(3) 对采用隔热降温工装进行回流焊接后的器件进行 SEM 微观组织分析。结果显示:回流焊接后的器件焊点完整,无明显缺陷,内部状态保持良好; 焊点均形成了连续的扇贝状界面层,成分为 Cu₆Sn₅, IMC 层厚度在 1~2.5 µm,符合 Q/QJB 235—2014 要 求,且未出现 Cu₃Sn 脆化物,表明控温焊接质量良好。

参考文献

[1] 杜爽,徐伟玲.无铅BGA焊接工艺方法研究[J]. 宇 航材料工艺,2012,42(6):83-87.

DU Shuang, XU Weiling. Research on welding for lead-free BGA process method [J]. Aerospace Materials & Technology, 2012,42(6):83-87.

[2] 成立,杨建宁,王振宇,等. 焊球阵列封装及其返修工 艺技术[J]. 半导体技术,2007(6):535-538.

CHENG Li, YANG Jianning, WANG Zhengyu, et al. Ball grid array package and its reprocess technology [J].

Semiconductor Technology, 2007(6):535-538.

[3] 吕强. 3D-Plus存储器印制板级组装可靠性研究 [J]. 电子工艺技术,2016,37(6):336-338,359.

LV Qiang. Research on reliability of 3D-plus memory stacks on PCB[J]. Electronics Process Technology, 2016, 37(6): 336-338, 359.

[4] 冉红雷,韦婷,张魁,等. 堆叠结构 BGA 焊接可靠性 评价方法[J]. 半导体技术,2021,46(5):407-411.

RAN Honglei, WEI Ting, ZHANG Kui, et al. Welding reliability evaluation method for stacked BGA [J]. Semiconductor Technology, 2021, 46(05):407-411.

[5] 陈帅,赵文忠,金星.印制板组件回流焊表面温度场的建模仿真技术[J].电子工艺技术,2023,44(2):23-26,32.

CHEN Shuai, ZHAO Wenzhong, JIN Xing. Modeling and simulation of temperature field on solder joints of printed board assembly [J]. Electronics Process Technology, 2023, 44(2):23-26, 32.

[6] 王海超,丁颖洁,栾时勋,等.CCGA封装芯片落焊控 温工艺研究[J]. 宇航材料工艺,2020,50(5):58-64.

WANG Haichao, DING Yingjie, LUAN Shixun, et al. Board-soldering temperature control process of CCGA packages after PCB assembling for space applications [J]. Aerospace Materials & Technology, 2020, 50(5):58-64.

[7] Q/QJB 235—2014《航天电子电气产品有铅、无铅混 合再流焊技术要求》[S].

Technical requirements for lead and lead-free hybrid reflow soldering of aerospace electronic and electrical products [S]. Q/ QJB 235—2014.

[8] 梁晓波,李晓延,姚鹏,等. 电子封装中Cu/Sn/Cu焊点 组织演变及温度对IMC立体形貌影响[J]. 焊接学报,2018,39 (9):49-54.

LIANG Xiaobo, LI Xiaoyan, YAO Peng, et al. Microstructural evolution of Cu/Sn/Cu joints and effect oftemperature on three– dimensional morphology of IMCs in packaging technology [J]. Transactions of The China Welding Institution, 2018, 39(9):49–54.