微叠层材料及其制备工艺研究进展

易 剑 赫晓东 李 垚

(哈尔滨工业大学复合材料研究所,哈尔滨 150001)

文 摘 着重论述了各种微叠层材料及其制备方法,认为电子束物理气相沉积是制备微叠层材料的有效方法;同时对微叠层材料性能方面的研究也作了相应的论述,并展望了我国今后在这方面的研究方向。 关键词 微叠层材料,制备方法,设备,性能研究

Research on Microlaminates and Their Preparation

Yi Jian He XiaoDong Li Yao

(Center for Composite Materials, Harbin Institute of Technology, Harbin 150001)

Abstract Various microlaminates and fabrications are discussed emphatically. Electron beam-physical vapor deposition (EB-PVD) is a better way to fabricate microlaminates. Some research on the property of microlaminates is also considered, and expectation of microlaminates research is also expressed.

Key words Microlaminates, Preparation, Facility, Property investigation

1 前言

长期以来,自然界中一些天然的复合材料如竹、 木、骨、贝壳等具有优异的力学性能;尤其是贝壳珍 珠层,在长期的进化过程中,达到了强、韧的最佳配 合,人们根据其结构原理,在新材料制备时逐步进行 了结构上的仿生。尤其是 1990年 Clegg等人¹¹模 仿生物材料结构创造性地制备了 SiC薄片与石墨片 交替叠层结构复合材料以来,通过叠层进行结构强 韧化的方法,已被广泛用于制备高性能的复合材料。

近 20年,随着科学技术的发展,在单独的块体 材料不能满足使用要求的情况下,出于对材料特殊 性能的需要,叠层结构越来越多的被考虑用作各种 各样的特殊材料,如耐高温材料、硬度材料、热障涂 层材料等^[2~14]。金属间化合物和陶瓷材料具有优 异的高强度及高温性能,可被应用在各个领域。但 它们本身的物理性能,如低温脆性和对环境剥蚀的 敏感性,使它们的应用受到限制。因而,应通过和其他材料进行叠层来补偿这些材料内在性能的不足。 本文针对国内外在微叠层材料方面的研究现状,概 括论述了研究较多的几种微叠层材料体系,及它们的制备工艺和设备。

2 微叠层材料

目前,国内外在微叠层材料方面的研究主要集 中在以下几个领域:金属-金属微叠层材料,金属-陶瓷微叠层材料,金属-金属间化合物微叠层材料, 金属-高分子微叠层材料,陶瓷-陶瓷/高分子微叠 层材料。

21 金属-金属微叠层材料

金属 - 金属微叠层材料主要是不同的二元系金 属间化合物,通过固态的非晶反应,形成非晶相。通 常非晶反应主要有两种活化模式:机械活化模式和 热活化模式。机械活化模式主要通过机械合金

收稿日期: 2004 - 06 - 14

2

— 16 —

基金项目:国家自然科学基金(50304007)及哈尔滨工业大学校交叉基金(MD. 2002.03)资助项目 作者简介:易剑,1979年出生,博士研究生,主要从事防护材料及涂层方面的研究工作

化^[13]来实现;而热活化模式主要通过连续的重复冷 轧结合热扩散^[13~17]、自蔓燃高温合成^[18]以及脉冲 激光沉积^[19]和磁控溅射沉积^[20]等来实现。

22 金属-金属间化合物微叠层材料

金属间化合物具有熔点高、密度低、热传导性高,以及抗高温腐蚀性好等一系列优点,被考虑用作航空工业中的高温结构材料^[21~24]。金属间化合物由于其晶体构造是长程有序的,所有其晶体的本征脆性涉及两个方面的问题:一是涉及金属间化合物电子结构状态,即除了金属键合以外,其中共价键合所占份量决定了其内禀本征脆性;其二涉及晶型及具有反相畴界的位错滑移机制、晶界脆性问题、环境脆性问题等(主要是氢脆敏感性高)。使金属间化合物在常温下的断裂韧性差,导致它的应用受到很多限制;许多研究者对此投入了大量的研究,进行了各种各样的合金化,包括形成单晶、化合物,以及利用定向凝固形成共晶化合物,但效果都不太理想。最后,发现制备成具有微叠层结构的金属 - 金属间化合物复合材料性能优异。

目前,微叠层材料的研究主要集中在过渡金属 包括 Fe, Ni, Ti和 AI的合金上。当金属间化合物与 金属制成微叠层材料后,可以提高它用作高温结构 材料时的力学性能。金属 - 金属间化合物微叠层材 料的制备方法,目前主要有:激光熔融合成^[25]、高温 自蔓燃反应^[5, 26]、电子束物理气相沉积^[27~28]、以及 溅射沉积^[10]等方法。如用激光熔融合成 NiA1/Mo 等微叠层材料,高温自蔓燃反应生成 Nb,Al/Nb等 微叠层材料,电子束物理气相沉积 Ni/NiAl等微叠 层材料,以及溅射沉积 Nb/Nb,A1等微叠层材料。 尤其是电子束物理气相沉积技术,不但可以制备出 各种层厚、体积分数以及层组分的金属间化合物复 合材料,而且间隙元素污染程度低,并具备良好的结 构完整性。这些微叠层材料以其优异的性能已逐渐 取代高温合金,作为航空工业中的高温结构材料得 到应用。

23 金属 - 陶瓷微叠层材料

陶瓷是一种本质脆性材料,因此提高陶瓷材料 的韧性成为影响陶瓷材料在高技术领域中应用的关 键^[29~31]。常用的强韧化方法有:变形强化,显微裂 纹增强,金属须、片状纤维或陶瓷纤维增强,以及掺 入一种延性金属相。对于二元系统来说,加入延性 金属相的方法是最好的,它包括三种不同的复合方 式:颗粒增强,纤维增强和叠层增强。研究发现,从 颗粒增强、纤维增强到叠层增强,韧化水平在不断地 提高^[29]。尤其是叠层强韧化方法,如图 1所示,已 被广泛用于制备高性能的陶瓷基复合材料。

图 1 陶瓷基层状复合材料结构示意^[31] Fig 1 Schematic drawing of LCMC macrostructure

24 金属 - 高分子微叠层材料

金属 -高分子微叠层材料主要是细纤维 环氧 树脂加强的高分子中间层与金属层叠而成的复合材 料。它用细纤维 /环氧树脂加强的高分子中间层把 铝合金板粘结成一个层,开启了应用拼接思想提高 薄板的最大可用尺寸的先河,结果显示制备的金属 -高分子微叠层材料具有良好的抗损坏性、高的耐 火性和比强度^[32~33]。

如文献 [34]所述,金属板与纤维增强的复合材 料交替层叠,不但纤维加强的复合材料的特有性能 被基本保留了,而且它与外层金属层的结合也使材 料免受环境的冲击;同时金属层还可提供高的剪切 强度。

2 5 陶瓷 - 陶瓷 高分子微叠层材料

陶瓷 - 陶瓷 高分子微叠层材料克服了陶瓷材料的致命弱点——突然性的整体断裂,它的失效是 逐层渐变。层状复合陶瓷材料的载荷 — 位移曲线发 生了极大的改变,如图 2所示^[35]。

的载荷 —位移曲线

— 17 —

宇航材料工艺 2005年 第 5期

SiC/C层状复合材料的断裂过程不再是普通陶 瓷的一次脆性断裂,而表现出一定的"假塑性"特 征。所制备的材料具有质量轻、断裂韧度高、耐疲劳 和抗热冲击能力强等优点^[36~38]。

3 微叠层材料制备工艺

微叠层复合材料是将陶瓷或金属间化合物等强 性层与金属或有机质韧性层交替层叠,经一定的工 艺加工而成。下面将介绍几种层状复合材料的制备 方法。

3.1 流延成型 (Tape Casting)

流延成型又称刮刀成型 (Doctor B lading) 是用 来制备薄片状陶瓷材料最常用的方法,该工艺包括 浆料制备、球磨、成型、干燥、剥离基带等过程。具体 的工艺过程为:将陶瓷粉末与有机溶剂混合制成均 匀稳定的悬浮浆料;当浆料从料斗下部流至基带时, 由刮刀的运动而使浆料形成坯膜,坯膜的厚度由刮 刀的高度控制:坯膜与基带一起送入烘干室,将料中 的溶剂蒸发而有机结合剂将陶瓷颗粒均匀的粘接起 来,形成具有一定强度和柔韧性的坯片;最终可对坯 片进行裁剪、烧结。该工艺的主要优点是可制备大 尺寸的陶瓷薄板,陶瓷基片的厚度易于控制,一般厚 度在 5 ~ 500 μ m。有利于控制层状材料的结构:缺 点是陶瓷浆料的制备较为复杂,而且有的有机溶剂 具有毒性,难于制备成分复杂的陶瓷薄片。目前已 经利用该工艺与其他工艺相结合制备出各种体系的 层状复合材料。

3.2 轧膜成型 (Dough Rolling)

轧膜成型是一种非常成熟的薄坯成型工艺。一 般分为粗轧和精轧多道工序。具体的过程是先将配 好的粉料经球磨、烘干等工序后得到较为细小的粉 末,再加入一定量的有机结合剂,放入碾片机进行加 热碾轧,使粉料和黏结剂等成分混合均匀,经过一段 时间后有机黏结剂逐渐挥发,制成具有一定厚度的 毛坯,该过程称为粗轧。精轧则是将所得的毛坯再 次送入碾片机,然后调节两轧辊间距,多次折叠、反 复轧炼,最终得到所需尺寸的均匀致密的薄片。该 工艺与流延成型相比,不必制备液体浆料,从而避免 了复杂的浆料制备过程。该工艺制备的坯料具有均 匀致密的优点,但是需粗轧和精轧等多道工序,因而 工艺复杂、效率低,而且所轧的薄片较厚,一般在 - 18 -- 100 µm以上。

3.3 注浆成型(Slip Casting)

注浆成型同流延成型类似,也是一种流态成型 的工艺。该工艺也是一种应用非常普遍的陶瓷薄片 成型方法,大多是离心注浆成型。在成型前通过调 节 pH值来调节黏度,使浆料充分流动,与流延成型 不同的是该工艺无需黏结剂,但需要制备陶瓷浓悬 浮体,从而限制了材料的选择。该工艺具有直接形 成层状结构的优点。

3.4 轧制扩散 (Forging Diffusion)

轧制扩散工艺是用来制备薄片状金属叠层材料 常用的方法,其工艺流程是:将表面清洁处理后的箔 片交替层叠,放在压力机上在一定的温度下进行轧 制复合,达到一定的变形量之后,把试样放入真空炉 中,在特定的温度下进行扩散处理。该方法的优点 是设备成本低廉,工艺简单易行;缺点是只能用来制 备金属 - 金属微叠层材料,且层间距、层厚比难以控 制。

3.5 等离子喷涂 (Plasma Spraying)

等离子喷涂工艺是采用等离子弧发生器 (喷 枪)将通入喷嘴内的气体 (常用 Ar, N₂ 和 H₂ 等气 体)加热和电离,形成高温高速等粒子束流熔化和 雾化金属或非金属材料,使其以高速喷射到经处理 的工件表面上形成涂层的方法。利用该工艺制备出 的叠层状复合材料具有层厚均匀和界面缺陷少等优 点。

3.6 磁控溅射法 (Magnetron Sputtering)

磁控溅射法是目前制备纳米尺寸叠层复合材料 最常用的方法之一。通过改变基片的旋转速度和挡 板的开闭时间等工艺参数,可以制备出所需结构参 数(层间距、层厚比)的叠层状复合材料;该方法制 备出的层状复合材料具有材料体系广、制备过程易 于控制、成膜质量高等优点。但是由于溅射速率低, 难于制备大尺寸的层状复合材料;而且不利于获得 界面清晰、明锐的层状材料。

3.7 脉冲激光沉积 (Pulsed Laser Deposition)

由于成功的制备了 YB a₂ Cu₃ O₇等高温超导材 料,脉冲激光沉积目前主要用来制备薄膜材料。其 工艺过程是使用一束 10~30 ns的脉冲激光束去蒸 宇航材料工艺 2005年 第 5期 发固体靶材表面,使蒸发物冷凝在基体上,从而可以 制备包括金属、半导体、绝缘体、超导体在内的一系 列物质。该方法简单易行,尤其适合制备那些难熔 的物质;缺点是工艺参数难于控制,而且会产生非热 烧蚀和等离子激发,从而影响物质的沉积过程和沉 积质量。

3.8 自蔓燃高温合成 (SHS)

自蔓燃高温合成的工艺过程是先将金属箔片按 一定的方式交替层叠,在真空条件下加热到一定温 度后,施加一定的压力进行反应,反应到一定时间 后,再在一定的温度和压力下进行扩散退火。优点 是工艺简单、生产效率高;缺点是难于合成高致密度 的产品。

3.9 电子束物理气相沉积(EB - PVD) 7

电子束物理气相沉积是以电子束为热源的一种

蒸镀方法,几乎可以蒸发所有的物质。该工艺的具 体工艺过程为:电子束通过磁场或电场聚焦在蒸发 源锭子上,使材料熔化,然后在真空环境下蒸发源材 料的气相原子通常以直线从熔池表面运动到基片表 面沉积成膜。同磁控溅射法相比,电子束物理气相 沉积速率高,特别是大功率电子束物理气相沉积技 术的发展,使制备大尺度叠层复合材料成为可能。 该工艺在制备金属 - 金属、金属 - 陶瓷、金属 - 金属 间化合物等叠层复合材料方面应用前景好。它几乎 可以制备任意体系的多层材料,工艺参数易于选择, 能够精确控制层间距和层厚比。此外,可根据叠层 状复合材料中组元的蒸气压的不同,制备界面成分 梯度变化的层状复合材料。表 1为主要的几种微叠 层材料体系的制备工艺和应用现状。

表 1	主要的人	1.种微叠层材料体系的制备	工艺和应用
1 X I			

Tab. 1	Preparation	and application	of differentm	icrolam ina tes	system s
--------	--------------------	-----------------	---------------	-----------------	----------

微叠层材料体系	制备工艺		
金属 - 金属	机械合金化 ,轧制扩散 , 自蔓燃高温合成 ,脉冲激光沉积 和磁控溅射沉积等	磁光记录介质, 光学记录介质, 磁阻传感器等	
金属 - 金属间化合物	激光熔融合成 ,高温自蔓燃反应 , 电子束物理气相沉积 ,溅射沉积等	高温结构材料等	
金属 - 陶瓷	流延成型,轧膜成型, 注浆成型,等离子喷涂等	高温结构材料等	
金属 - 高分子	流延成型,轧膜成型, 注浆成型,等离子喷涂等	飞行器上的面板等	
陶瓷 - 陶瓷 高分子	流延成型,轧膜成型, 注浆成型,等离子喷涂等	超硬材料,微电子工业中的基板和 航空工业中的热障涂层等	

4 微叠层材料性能的研究

由于微叠层材料在工程中的应用最终凭借的还 是它们的强度与韧性等性能,因而有关微叠层材料 本身性能的研究,大部分集中于微叠层材料的变形、 断裂及分层等行为的研究^[7,39~40]。单层的薄膜和 涂层可通过晶体结构和显微结构来控制它们的性 能,而微叠层材料的性能对界面性能很敏感,因而界 面性能基本上决定了微叠层材料的独特性能。

微叠层材料的断裂过程与层的强度、显微结构、 宇航材料工艺 2005年 第 5期 缺陷以及裂纹尖端的转移过程等有关。通过联合应 用材料的强韧化机理来改善裂纹尖端应力场的形状 和数值,从而可以大幅提高微叠层材料的韧性。同 时,层的形状及微观结构也决定了微叠层材料的变 形机制。

为了尽量减小微叠层材料的原始裂纹缺陷对力 学性能的敏感性,在进行微叠层复合材料结构设计 时,引入了与传统不同的增韧机制,对于像陶瓷和金 属间化合物这样的基体,主要有以下几种增韧机制。

— 19 —

4.1 弱夹层裂纹偏转增韧

在设计微叠层复合材料时,常在陶瓷和金属间 化合物这样的高强高硬基体间引入薄的弱夹层。夹 层的要求是弱夹层足以偏转裂纹,强夹层必须有一 定的压缩和剪切性能。

4.2 延性夹层裂纹桥联增韧

延性夹层可以是金属,也可以是延性树脂,以连续层状形式存在。延性层发生较大程度的塑性变形 来消耗、吸收能量,塑性变形区也会导致裂纹尖端屏 蔽,使裂纹钝化,并在裂纹尾部被拉伸和形成桥联, 减小裂纹尖端的应力强度因子,减缓裂纹扩展速率, 阻止裂纹进一步张开,从而改善塑性。

4.3 叠加互补增韧

层状陶瓷和金属间化合物材料可使强度在一定 范围内基本与缺陷尺寸无关,但是以牺牲小缺陷时 强度为代价。这种三层结构对从表面缺陷引发的断 裂有效,而对其它情况例如非等轴拉伸,整个材料的 横截面受到同样的应力,这时对强度和韧性没有丝 毫贡献。

4.4 界面残余应力增强增韧

利用层状复合材料的基体层与夹层之间热膨胀 系数、收缩率的不匹配或者某层中相变而使层间有 应变差引入残余应力场增强增韧机制。残余应力可 通过 X射线测定,也可以计算出。下面分三层和多 层两种情况进行讨论。

设计三层复合陶瓷时,利用材料线膨胀系数差 异或相变,调节各自层数、层厚,可使表面层产生合 适压应力。因为压缩区的应力区围绕裂纹尖端,抑 制裂纹的产生扩展,所以表面层如有压应力,它的断 裂,疲劳阻抗就会明显的提高,临界裂纹长度减小, 导致强度、韧性提高,表面微硬度也有一定提高。

多层界面应用变"强"裂纹偏转增韧,这种设计 在多层复合材料中引入应力使界面变"强",当裂纹 扩散到界面时,其尖端与应力场作用而偏转,并可能 使裂纹开叉。

5 展望

-20 -

由于微叠层材料的研究起步较晚,只有十多年 的历史,因而对它的研究缺乏系统性。无论是理论 研究,还是材料制备工艺及设备等的研究都还存在 很大的不足,对于微叠层材料这个新兴领域,应该投 入较多的研究力量,开发一些新的设备、工艺,同时 在理论上,给出具有普适性的经验,理论公式。

参考文献

1 Clegg W J, Kendall K, Alford N M. A simple way to make tough ceramics Nature, 1990; 347(10): $455 \sim 457$

2 Was G S, Foecke T. Deformation and fracture in microlaminates Thin Solid Films, 1996; 286: 1~31

3 Wadsworth J, Lesuer D R. Ancient and modem laminated composites-from the great pyramid of gizeh to Y2K Mater Characterization, 2000; 45: 289 ~ 313

4 Lesuer D R, Syn C K, Sherby O D et al Mechanical behavior of laminated metal composites Int Mater Rev., 1996; 41(5): 169~197

5 Shah D M, Anton D L, Pope D P et al In-situ refractory intermetallic-based composites Mater Sci & Eng A, 1995; 192/193: 658~672

6 Jeske T, Schmitz G Influence of the microstructure on the interreaction of Al/Ni investigated by tomographic atom probe Mater Sci & Eng A, 2002; 327: 101 ~ 108

7 Was G S, Foecke T Deformation and fracture in microlaminates Thin Solid Films, 1996; 286: $1 \sim 31$

8 Jalonen P, Tuominen A. The effect of sputtered interface metallic layers on reinforced core laminate making build-up structures Microelectronics Reliability, 2002; 42: 1 075 ~ 1 079

9 B byer D R, Venkateswara Rao K T, Ritchie R O. Lam inated Nb/Nb₃Al composites: effect of layer thickness on fatigue and fracture behavior Mater Sci & Eng A, 1997; 239/ 240: $393 \sim 398$

10 Banerjee R, Thompson G B, Anderson P M et al Sputter deposited nanocrystalline Ni-25Al alby thin films and Ni/Ni_bA multilayers Thin Solid Films, 2003; 424: 93 ~ 98

11 Lewis AC, Josell D, Weihs T P. Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries Scripta Mater, 2003; 48:1 079 ~ 1 085

12 Amanda K, Petford L. Structural characterization of multiplayer films Thin Sold Films, 1996; 275: $35 \sim 39$

13 Sieber H, Wilde G, Perepezko J H. Thermally activated amorphous phase formation in cold-rolled multilayers of Al-Ni, Al-Ta, Al-Fe and Zr-Cu J. Non-Cryst Solids, 1999; 250 ~252: 611~615

14 Sieber H, Park J S, Weissm ller J et al Structural e-宇航材料工艺 2005年 第 5期 volution and phase formation in cold-rolled aluminum nickel multilayers Acta mater 2001; 49: 1 139 ~ 1 151

15 Himmer T, Nakagawa T, Anzai M. Lamination of metal sheets Computers in Industry, 1999; 39: 27 ~ 33

16 Battezzati L, Pappalepore P, Durbiano F et al Solid state reactions in Al-Ni alternate foils induced by cold rolling and annealing Acta Mater, 1999; $47(6): 1901 \sim 1914$

17 Mengucci P, Majni G, Cristoforo A D et al Structural evolution of Fe-Al multilayers submitted to thermal annealing Thin Solid Films, 2003; 433: $205 \sim 210$

18 Ping Zhu, Li J CM, Liu C T Reaction mechanism of combustion synthesis of NiA1 Mater Sci & Eng A, 2002; 329 ~ 331: 57 ~ 68

19 Lunney J G Pulsed laser deposition metal and metal multiplayer films Appl Surf Sci , 1995; 86: 79 ~ 85.

20 B bbaum K J, Heerden D V, Gavens A J et al Al/Ni formation reactions: characterization of the metastable A l_1 N l_2 phase and analysis of its formation Acta Mater, 2003; 51: 3 871 ~3 884

21 Rawers J C, Alman D E Fracture characteristics of metal-intermetallic laminar composites produced by reaction sintering and hot pressing Compos Sci Technol, 1995; 54: 379 ~ 384

22 Pickard SM, Zhang H, Ghosh A K Interface shear properties and toughness of NiA HMo laminates Acta Mater, 1997; 45 (10): 4 333 ~ 4 350

23 Rohatgi A, Harach D J, Vecchio K S et al Resistance-curve and fracture behavior of Ti-A $l_{\rm b}$ Ti metallic intermetallic laminate (M L) composites Acta Mater, 2003; 51: 2 933 ~2 957

24 Fox M R, Ghosh A K Structure, strength and fracture resistance of interfaces in NiA1/Mo model laminates Mater Sci & Eng A, 1999; 259: 261~268

25 Maznmder J, Chung H, Yamamoto T et al Nanocrystalline NbA B powders and NbA $\frac{1}{2}$ -Al multilayers by laser ablation deposition Nano Struct Mater , 1997; 9: 75 ~ 78

26 王华彬,韩杰才,张幸红等.原位合成 Ni/Ni-Al 金属间化合物层板复合材料的组织转变.材料科学与工艺, 1998; 6(3):56~60

27 Movchan B A. EB-PVD technology in the gas turbine industry: present and future JOM, 1996: $40 \sim 45$

28 Li Yao, Zhao Jiupeng , Zeng Gang et al Ni/Ni₃Al microlaminate composite produced by EB-PVD and the mechanical properties Mater Lett , 2004; 58: 1 629 ~1 633

29 El-Shaer Y, Derby B. Modelling of R-curve behaviour in ceramic-metal laminates Mater Sci & Eng A, 2004;
365: 196~201

30 袁广江,罗永明,陈大明等. SIC基层状复合材料界 面层的选择. 硅酸盐学报,2001; 29(3): 226~231

31 Sherman D. The mechanical behavior of layered brazed metal/ceramic composites Mater Lett , 1998; 33: 255 ~ 260

32 Vries TJ, Vlot A, Hashagen F. Delamination behavior of spliced fiber metal Laminates Part 1: experimental results Compos Struct, 1999; 46: 131 ~ 145

33 Zheng M ing Huang On a general constitutive description for the inelastic and failure behavior of fibrous laminates-Part I lamina theory. Computers and Structures, 2002; 80: 1 159 ~1 176

34 Afaghi-Khatibi A, Lawcock G, Lin Ye et al On the fracture mechanical behaviour of fibre reinforced metal laminates (FRMLs). Comput Met Appl Mech Eng , 2000; 185: 173 ~190

35 CleggW J. Acta Metall Mater , 1992; 40 (11) : 3 085 ~ 3 093

36 Kokubo T, Kim H M, Miyaji F et al Ceramic metal and ceramic-polymer composites prepared by a biomimetic process Compos Part A, 1999; 30: $405 \sim 409$

37 Xiao B in Hu, B in Yuan Zhao, Ke Ao Hu A novel fabrication of doped C/C composite laminations by aqueous tape casting Acta Mater, 2004; 52: $467 \sim 73$

38 钱晓倩, 葛曼珍, 吴义兵等. 层状复合陶瓷强韧化 机制及其优化设计因素. 无机材料学报, 1999; 14(4): 520 ~526

39 Heerden D V, Gavens A J, Foecke T et al Evaluation of vapor deposited Nb/Nb₅ Si₅ microlaminates Mater Sci & Eng A, 1999; 261: $212 \sim 216$

40 Kim J K, Yu T X. Forming and failure behaviour of coated and sandwiched sheet metals: a review. J. Mater Process Tech , 1997; $63: 33 \sim 42$

(编辑 任涛)

宇航材料工艺 2005年 第 5期