膨胀石墨用作烟幕材料衰减毫米波性能研究

胡晓春^{1,2} 乔小晶¹ 薛富民¹

(1 北京理工大学机电工程学院爆炸科学与技术国家重点实验室,北京 100081)(2 防化指挥工程学院,北京 102205)

文摘 以无机 -有机混酸为介质用电化学法制备了膨胀石墨,分析了影响膨胀石墨蠕虫长度的因素; 对样品进行了红外及热重分析。样品在 8~14 µm 红外波段有数个特征吸收峰;在 DTG曲线上第一个失重 峰出现在 201 ;540 时混酸插层化合物失重率为 12 9%。测试了不同长度分布的膨胀石墨蠕虫对 8毫米 波的衰减性能,结果表明:当石墨蠕虫长度主要分布在 2.7~3.9 mm 时,干扰效果较好,衰减率可达 11.61 dB,为潜在的宽波段干扰剂。

关键词 烟幕,毫米波,衰减,膨胀石墨

Study on Millimeter Wave Attenuation Character of Expanded Graphite Used as Smoke Material

Hu Xiaochun^{1,2} Qiao Xiaojing¹ Xue Fum in¹

(1 State Key Laboratory of Explosion Science and Technology, College of Mechano-Electric Engineering,

Beijing Institute of Technology, Beijing 100081)

(2 Institute of Chemical Defense, Beijing 102205)

Abstract Expandable graphite is prepared in mixing acid solution by using electrochemical method and the factors influencing worm lengths of expanded graphite are analyzed FT - \mathbb{R} and TG - DTG analysis is carried out FT - \mathbb{R} curve shows that there are several characteristic absorption peaks of the expandable graphite in 8 ~ 14 µm. In TG - DTG curves an obvious weight loss peak occurs at 201 and weight loss proportion reaches 12 9% at 540 . 8 M illimeter wave attenuation characters of expanded graphite worms with different length distribution are tested The results show that attenuation gets to the maximum 11. 61 dB when the sizes of expanded graphite worms are in 2. 7 ~ 3. 9 mm. This expanded graphite is potential screening material to interfere electromagnetic wave at wide wave band

Key words Smoke, Millimeter wave, Attenuation, Expanded graphite

1 引言

制导技术的日益发展推动抗干扰技术日益完 善,新型毫米波制导技术由于抗干扰性和精度优于 微波制导,全天候作战能力优于红外成像制导而备 受重视。烟幕可以显著削弱现代光电侦察设备和光 电制导武器的效能,据文献 [1]报道,在进攻时烟幕 能使敌方武器效能降低 4/5,防御时能使敌方武器 效能降低 9/10。然而传统的基于六氯乙烷以及基 于白磷或红磷等的燃烧形成的烟幕,对红外和可见 光波段行之有效,而对于毫米波段的衰减却大打折

作者简介:胡晓春,1972年出生,硕士,主要从事光电对抗及功能材料的研究工作

宇航材料工艺 2005年 第 5期

收稿日期:2004-04-30;修回日期:2005-07-08

扣^[2]因此研制能有效衰减毫米波的烟幕材料显得 尤为必要和迫切。

膨胀石墨是指将天然鳞片石墨经过一定的特殊 处理后经高温膨胀得到的产品,它是一种性能优良 的无机材料、具有耐热、耐腐蚀、轻质、回弹等许多优 异性能,主要用作密封材料、阻燃材料、电池原料和 轻质导电材料等^[3]。文献 [4 报道了一种可以用来 干扰毫米波的烟雾剂,其中含有 40% ~65% 可膨胀 石墨成分。据此,我们选用了不同粒度的天然鳞片 石墨,用电化学法以硫酸和乙酸混合溶液为介质合 成出可膨胀石墨,经高温膨胀后形成石墨蠕虫.用气 流分散在烟箱内测试其对 8毫米波的衰减性能。

2 实验

2.1 试样制备

原料为天然磷片石墨 (碳质量分数 99.5%). 硫酸 (98%)、乙酸 (99.5%),均为分析纯。在室温 下,采用电化学方法合成可膨胀石墨[5]。反应完成 后,洗涤、烘干,高温膨胀后得到石墨蠕虫。

2.2 测试分析

(a) 膨胀前

红外分析用 Bruker EQU NOX55 型红外光谱 仪.采用 KBr压片法测试了硫酸 - 乙酸插层石墨膨 胀前后的红外谱图。

热重分析采用 Perkin - Elmer Pyrisl 型热重分 析仪研究了硫酸 - 乙酸插层化合物的热分解过程. 并与硫酸插层化合物对比。测试条件为:流动 N₂气 氛,流速为 20 mL/min,升温速率为 60 /min。

3 结果与讨论

3.1 红外分析

硫酸 - 乙酸插层石墨膨胀前后红外谱图分析结 果见图 1。图 1(a)中,在 1 635.49 cm⁻¹附近的宽吸 收峰为脂肪羧酸的特征吸收峰:而在 1 210~1 150 cm⁻¹和 1 060~1 030 cm⁻¹有一对磺酸振动吸收峰, 600 cm^{-1} 附近有 HSO⁴ 吸收峰,石墨膨胀后仍可见 此三个峰 [图 1(b)],但强度大为减弱,说明有少许 残余硫。膨胀石墨在 8~14 µm (1 200~800 cm⁻¹) 波段有数个特征吸收峰将有助于烟幕剂对该波段红 外辐射的吸收衰减。

硫酸-乙酸插层石墨膨胀前后的红外谱图 图1 Fig. 1 FT - IR curves of H2SO4 - HAC - GIC before and after expansion

3.2 影响石墨蠕虫长度的因素

电化学方法制得的石墨蠕虫的长度与所用原料 石墨的粒度、电解液的浓度、电流、反应时间、膨化温 度等因素有关,反应中可以通过调节电化学参数来 控制插层反应的程度,从而控制膨胀石墨的尺寸在 一定的范围内。固定电化学条件,显微镜下观测的 石墨蠕虫长度分布与膨化温度、原料粒度的关系见 表 1.表中所示的长度分布占所有石墨蠕虫的 80% 以上。在 600 以前,石墨蠕虫长度随着温度升高 而增加,600 以后,随温度升高长度的增加不明显,

甚至有减小的趋势 .这与氧化烧蚀有关。

表 1 石墨蠕虫长度分布

Tab. 1 D istribution of worm lengths of expanded graphite

石墨原料		蠕虫长度 /mm				
<u>粒度 /µm</u>	400	500	600	700	800	
100	0.5~0.7	0.6~0.8	0.8~1.0	0.8~1.0	0.8~1.0	
125	0. 9 ~ 1. 1	1. 0 ~ 1. 2	1. 3 ~ 1. 5	1. 3 ~ 1. 4	1. 3 ~ 1. 5	
154	1. 1 ~ 1. 6	1. 2 ~ 1. 7	1. 6 ~ 2. 3	1. 6~2. 3	1. 5 ~ 2. 3	
180	1. 8 ~ 2. 6	2 0 ~ 2 9	2.7~3.9	2 8 ~ 4 0	2 7~4.0	
280	3. 8 ~ 4. 8	4. 1 ~ 5. 2	5.4~6.8	5. 5 ~ 6. 9	5.4~6.8	

宇航材料工艺 2005年 第 5期

硫酸 -乙酸插层化合物热分解过程与硫酸插层

Fig. 2 TG - DTG curves of H2SO4 - HAC - GIC and H2SO4 - GIC

从图 2看出,硫酸插层可膨胀石墨仅在 261 附近有一个较大的失重率,而硫酸 - 乙酸插层存在 两个失重率较大的峰,分析是乙酸、硫酸先后逸出产 生的。硫酸 - 乙酸插层石墨有较大失重率的第一峰 值(201)比硫酸插层的 261 低,这表明插入乙酸 易于从石墨中逸出,降低了初始分解温度。在 540 下,混酸插层化合物失重率 12.9%,硫酸插层 的为 11.3%,失重率大,气体逸出得多,有望在膨胀 时形成较大的推动力,从而制得膨胀倍率较大的膨 胀石墨。

由上可见,在混酸条件下制得的可膨胀石墨比 硫酸插层的可膨胀石墨的初始膨胀温度低,总失重 率也大,推测其作烟幕剂时有望减少烟火药用量,从 而提高烟幕弹的成烟效率。

3.4 8毫米波衰减率

- 7

根据电磁波传输理论,当电磁波穿过气溶胶时, 其透过率 T:

$$T = P/P_0 = e^{CL}$$

式中, P₀和 P分别是电磁波穿过气溶胶前后的输入 及输出能量, C为气溶胶材料的质量浓度, L为电磁 波通过气溶胶的距离(光程),为材料的衰减系数。

将石墨蠕虫用气流分散在烟箱中,测试其衰减 性能 (光程 L = 0.4 m,石墨蠕虫质量浓度 $C = 8 \text{ g/} \text{ m}^3$),结果见表 2。为了减小测量的误差,对膨胀石 墨的衰减性能测量数次,取平均值。

从表 2可以看出,不同长度分布的膨胀石墨蠕 宇航材料工艺 2005年 第 5期 虫对毫米波衰减性能有所不同,长度主要分布在 2.7~3.9 mm时(接近于半波长),衰减效果较好, 达到 11.61 dB。

表 2 膨胀石墨衰减 8毫米波性能 Tab. 2 Attenuation characters of

expanded graphite for 8 mm wave

石墨原料 粒度 /µm	蠕虫长度分布 (80%)/mm	衰减率 /dB	衰减系数 ∕m ² ⋅g ⁻¹
100	0.8~1.0	10. 30	0. 74
125	1. 3 ~ 1. 5	10. 56	0. 75
154	1. 6~2.3	11. 21	0. 81
180	2. 7 ~ 3. 9	11. 61	0.84
280	5. 4 ~ 6. 8	10. 90	0. 78

烟幕对电磁波的衰减主要由吸收、散射所引起, 散射衰减的强弱取决于粒子尺度与波长之比。石墨 蠕虫的尺度与 8毫米波的波长接近,属于米氏散射, 消光能力较强。传统烟幕粒子的直径远小于波长, 属于瑞利散射,散射强度与波长 ⁴成正比,衰减率 太小,因而无法干扰毫米波。

4 结论

(1)用不同粒度原料在硫酸 - 乙酸中采用电化 学法制备出可膨胀石墨,控制电解液的浓度、电流、反 应时间、膨化温度制得长度分布在 0.5~6.8 mm的膨 胀石墨;在 600 下膨化,蠕虫的增长效果较佳。

(下转第 56页)

— 43 —

13.36%。

4 结论

(1)利用 Matlab软件来实现铸造铝青铜金相组 织的分析、测量是完全可行的,这为铝青铜的深入研 究、揭示其组织与性能的关系提供了强有力的技术 支持,奠定科学的基础。该方法也可扩展应用于其 他材料的金相分析,对推动定量金相学具有积极作 用。

(2)运用 Matlab图像处理工具箱不需要传统的 繁琐编程,研究人员只需掌握一些基本的处理等函数,从而节省了程序设计、调试所需的时间,可集中 精力思考解决问题的方法,研究问题的本质,提高了 效率及质量。

参考文献

1 Sadayappan M, Zavadil R, Sahoo M. Mechanical properties of aluminum bronze alby C95400. AFS Transaction, 2001; 109: 745 ~ 758

2 Park TD, Kim D Y, Youn J G A study on factors determining tensile properties of Ni - Al bronze casting AFS Transactions, 2001; 109: 697 ~ 702

3 项安,徐雪松,贾剑平.焊接温度场热图像的 MAT-LAB软件分析技巧.南昌航空工业学院学报,1999;13(3): 17~20,38

4 张新平. Matlab图形图像处理在材料研究中的应用. 铸造技术, 1999; 24(5): 375~377

5 王晓丹,吴崇明.基于 MATLAB 的系统分析与设计——图像处理.西安:西安电子科技大学出版社,2000:69 ~70

6 Kenneth R. Castleman, digital mage processing U. S A. : Prentice-Hall International, Inc. 1996: 470 ~ 478

7 Li Yuanyuan, Tungwai Leo Ngai, W ei Xia Mechanical, friction and wear behaviors of a novel high-strength wear-resisting alum inum bronze Wear, 1996; 197: 130 ~ 136

8 Wolberg G Digital Image warping. Los A lamitos: IEEE Computer Society Press, 1990: 46 ~ 47

9 陈桂明,张明照,戚红雨.应用 MATLAB语言处理数 字信号与数字图像.北京:科学出版社,2000:123~126

(编辑 任涛)

(上接第 43页)

(2) TG - DTG分析表明该法制备的可膨胀石墨 由于有容易气化的乙酸的插入,在 201 即出现一 个较为明显的失重峰,540 下的失重率也较硫酸插 层石墨的大。用该插层化合物作烟幕剂时可减少烟 火药的用量,从而提高整弹的发烟效率。

(3)膨胀石墨蠕虫长度分布主要在 2 7~3.9 mm (接近于半波长)时,对 8毫米波的衰减效果较 好,可达到 11.61 dB。此外,膨胀石墨在红外波段 具有特征吸收,密度较小,留空时间较长,有望成为 良好的宽波段无源干扰材料。 1 余勇.无源干扰弹药的现状及发展趋势.外军电子 战,2001; (2):46

2 路远,凌永顺,时家明.毫米波无源干扰研究.光电对抗与无源干扰,2002; (3):13~16

3 Chung D D L. Review: Exfoliation of graphite J. Mater Sci , 1987; 22(12): 1 801 ~ 1 810

4 Krone U W E et al Pyrotechnic smoke composition for camouflage purposes US 5656794, 1997

5 于仁光,乔小晶,刘伟华等.新型环保材料膨胀石墨的化学法制备及性能.化工生产与技术,2003;4(6):6~8 (编辑 李洪泉)

参考文献

— 56 —

宇航材料工艺 2005年 第 5期